A057355 a(n) = floor(3*n/5).
0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 15, 15, 16, 16, 17, 18, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 30, 30, 31, 31, 32, 33, 33, 34, 34, 35, 36, 36, 37, 37, 38, 39, 39, 40, 40, 41, 42, 42, 43, 43
Offset: 0
References
- N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- N. Dershowitz and E. M. Reingold, Calendrical Calculations Web Site.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).
Crossrefs
Programs
-
Magma
[3*n div 5: n in [0..80]]; // Bruno Berselli, Dec 07 2016
-
Mathematica
Table[Floor[3*n/5], {n, 0, 50}] (* G. C. Greubel, Nov 02 2017 *)
-
PARI
a(n)=3*n\5 \\ Charles R Greathouse IV, Sep 02 2015
Formula
G.f.: x^2*(1 + x^2 + x^3)/((1 - x)*(1 - x^5)). - Bruce Corrigan (scentman(AT)myfamily.com), Jul 03 2002
For all m>=0: a(5m)=0 mod 3; a(5m+1)=0 mod 3; a(5m+2)=1 mod 3; a(5m+3)=1 mod 3; a(5m+4)=2 mod 3.
Sum_{n>=2} (-1)^n/a(n) = Pi/(3*sqrt(3)) - log(2)/3. - Amiram Eldar, Sep 30 2022
Comments