A057367 a(n) = floor(11*n/30).
0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 26, 26, 26, 27, 27, 27, 28
Offset: 0
References
- N. Dershowitz and E. M. Reingold, Calendrical Calculations, Cambridge University Press, 1997.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, NY, 1994.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
- Index entries for sequences related to Beatty sequences
Crossrefs
Programs
-
Magma
[Floor(11*n/30): n in [0..50]]; // G. C. Greubel, Nov 03 2017
-
Maple
A057367:=n->floor(11*n/30); seq(A057367(k), k=0..100); # Wesley Ivan Hurt, Oct 29 2013
-
Mathematica
Table[Floor[11n/30], {n,0,100}] (* Wesley Ivan Hurt, Oct 29 2013 *)
-
PARI
a(n)=11*n\30 \\ Charles R Greathouse IV, Sep 02 2015
Formula
a(n) = a(n-1) + a(n-30) - a(n-31).
G.f.: x^3*(1 + x^3 + x^6 + x^8 + x^11 + x^14 + x^17 + x^19 + x^22 + x^25 + x^27)/( (1+x)*(1+x+x^2)*(x^2-x+1)*(x^4+x^3+x^2+x+1)*(x^4-x^3+x^2-x+1)*(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)*(x^8+x^7-x^5-x^4-x^3+x+1)*(x-1)^2 ). [Corrected by R. J. Mathar, Feb 20 2011]
Comments