cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057434 a(n) = Sum_{k=1..n} phi(k)^2.

Original entry on oeis.org

1, 2, 6, 10, 26, 30, 66, 82, 118, 134, 234, 250, 394, 430, 494, 558, 814, 850, 1174, 1238, 1382, 1482, 1966, 2030, 2430, 2574, 2898, 3042, 3826, 3890, 4790, 5046, 5446, 5702, 6278, 6422, 7718, 8042, 8618, 8874, 10474, 10618, 12382, 12782
Offset: 1

Views

Author

N. J. A. Sloane, Sep 08 2000

Keywords

Comments

Partial sums of A127473. - R. J. Mathar, Sep 29 2008

Crossrefs

Programs

  • Mathematica
    FoldList[Plus, 1, EulerPhi[Range[2, 50]]^2] (* Ivan Neretin, May 30 2015 *)
  • PARI
    a(n) = sum(k=1, n, eulerphi(k)^2); \\ Michel Marcus, Dec 20 2015

Formula

We can derive an asymptotic formula from a general formula given in the reference, namely: a(n) = C*n^3 + O(log(x)^(4/3)log(log(x))^(8/3)) where C = (1/3)/zeta(2)^2*Product_{p prime}(1+1/(p-1)/(p+1)^2) = 0.142749835225698(...). - Benoit Cloitre, Dec 22 2015
a(n) ~ c * n^3 / 3, where c = A065464 = Product_{primes p} (1 - 2/p^2 + 1/p^3) = 0.4282495056770944402187657075818235461212985133559361440319... - Vaclav Kotesovec, Dec 18 2019