A057494 a(n) = Sum_{k = 1..10^n} d(k) where d(n) = number of divisors of n (A000005).
1, 27, 482, 7069, 93668, 1166750, 13970034, 162725364, 1857511568, 20877697634, 231802823220, 2548286736297, 27785452449086, 300880375389757, 3239062263181054, 34693207724724246, 369957928177109416, 3929837791070240368, 41600963003695964400, 439035480966899467508
Offset: 0
Keywords
Links
- Henri Lifchitz, Table of n, a(n) for n = 0..36
- Terence Tao, Ernest Croot III, and Harald Helfgott, Deterministic methods to find primes, Mathematics of Computation, 81 (2012), 1233-1246. arXiv:1009.3956, [math.NT], 2010-2012.
Programs
-
Mathematica
k = s = 0; Do[ While[ k < 10^n, k++; s = s + DivisorSigma[ 0, k ] ]; Print[s], {n, 0, 8} ]
-
PARI
a(n) = sum(k=1, 10^n, numdiv(k)); \\ Michel Marcus, Feb 19 2017
-
Python
from math import isqrt def A057494(n): return -(s:=isqrt(m:=10**n))**2+(sum(m//k for k in range(1,s+1))<<1) # Chai Wah Wu, Oct 23 2023
Formula
a(n) = A006218(10^n). - Max Alekseyev, May 10 2009
Extensions
a(10)-a(16) from Max Alekseyev, Jan 25 2010
a(17)-a(19) from Donovan Johnson, Dec 26 2012
a(20)-a(27) from Hiroaki Yamanouchi, Sep 22 2015
a(28)-a(36) from Henri Lifchitz, Feb 19 2017
Comments