cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057623 a(n) = n! * (sum of reciprocals of all parts in unrestricted partitions of n).

Original entry on oeis.org

1, 5, 29, 218, 1814, 18144, 196356, 2427312, 32304240, 475637760, 7460546400, 127525829760, 2302819079040, 44659367020800, 911770840108800, 19784985947596800, 449672462639769600, 10790180876185804800, 270071861749240320000, 7094011359005190144000
Offset: 1

Views

Author

Leroy Quet, Oct 09 2000

Keywords

Examples

			The unrestricted partitions of 3 are 1 + 1 + 1, 1 + 2 and 3. So a(3) = 3! *(1 + 1 + 1 + 1 + 1/2 + 1/3) = 29.
		

Crossrefs

Column 1 of A210590.
Cf. A103738.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
           b(n, i-1)+`if`(i>n, 0, (p-> p+[0, p[1]/i])(b(n-i, i)))))
        end:
    a:= n-> n!*b(n$2)[2]:
    seq(a(n), n=1..30);  # Alois P. Heinz, Sep 11 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, 0, b[n, i-1] + If[i>n, 0, Function[ {p}, p + {0, p[[1]]/i}][b[n-i, i]]]]]; a[n_] := n!*b[n, n][[2]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Apr 02 2015, after Alois P. Heinz *)
    Table[n!*Sum[DivisorSigma[1, k]*PartitionsP[n - k]/k, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, May 29 2018 *)
  • Maxima
    S(n,m):=(if n=m then 1 else if nVladimir Kruchinin, Sep 10 2014 */
    
  • PARI
    {a(n) = my(t='t); n!*polcoef(polcoef(prod(k=1, n, (1-x^k+x*O(x^n))^(-1-t)), n), 1)} \\ Seiichi Manyama, Nov 07 2020

Formula

n! *sum_{k=1 to n} [sigma(k) p(n-k) /k], where sigma(n) = sum of positive divisors of n and p(n) = number of unrestricted partitions of n.
a(n) = P(n,1), where P(n,m) = P(n,m+1)+S(n-m,m)*n!/m+n!/(n-m)!*P(n-m,m)), P(n,n)=(n-1)!, P(n,m)=0 for m>n, S(n,m) is triangle of A026807. - Vladimir Kruchinin, Sep 10 2014