cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A057622 Initial prime in first sequence of n consecutive primes congruent to 5 modulo 6.

Original entry on oeis.org

5, 23, 47, 251, 1889, 7793, 43451, 243161, 726893, 759821, 1820111, 1820111, 10141499, 19725473, 19725473, 136209239, 400414121, 400414121, 489144599, 489144599, 766319189, 766319189, 21549657539, 21549657539, 21549657539, 140432294381, 140432294381, 437339303279, 1871100711071, 3258583681877
Offset: 1

Views

Author

Robert G. Wilson v, Oct 09 2000

Keywords

Comments

Same as A057621 except for a(1). See A057620 for primes congruent to 1 (mod 6). See A055626 for the variant "exactly n", which is an upper bound, cf. formula. - M. F. Hasler, Sep 03 2016
The sequence is infinite, by Shiu's theorem. - Jonathan Sondow, Jun 22 2017

Examples

			a(12) = 1820111 because this number is the first in a sequence of 12 consecutive primes all of the form 6n + 5.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", A4

Crossrefs

Programs

  • Mathematica
    p = 0; Do[a = Table[-1, {n}]; k = Max[1, p]; While[Union@ a != {5}, k = NextPrime@ k; a = Take[AppendTo[a, Mod[k, 6]], -n]]; p = NestList[NextPrime[#, -1] &, k, n]; Print[p[[-2]]]; p = p[[-1]], {n, 18}] (* Robert G. Wilson v, updated by Michael De Vlieger, Sep 03 2016 *)
    Table[k = 1; While[Total@ Boole@ Map[Mod[#, 6] == 5 &, NestList[NextPrime, Prime@ k, n - 1]] != n, k++]; Prime@ k, {n, 12}] (* Michael De Vlieger, Sep 03 2016 *)

Formula

a(n) = A000040(A247967(n)). a(n) = min { A055626(k); k >= n }. - M. F. Hasler, Sep 03 2016

Extensions

More terms from Don Reble, Nov 16 2003
More terms from Jens Kruse Andersen, May 30 2006
Three lines of data (derived from J.K.Andersen's web page) completed by M. F. Hasler, Sep 02 2016

A057620 Initial prime in first sequence of n consecutive primes congruent to 1 modulo 6.

Original entry on oeis.org

7, 31, 151, 1741, 1741, 1741, 19471, 118801, 148531, 148531, 406951, 2339041, 2339041, 51662593, 51662593, 73451737, 232301497, 450988159, 1444257673, 1444257673, 1444257673, 24061965043, 24061965043, 43553959717, 43553959717
Offset: 1

Views

Author

Robert G. Wilson v, Oct 09 2000

Keywords

Comments

See A055626 for the variant "exactly n". See A247967 for the indices of these primes. See A057620, A057621 for variants "congruent to 5 (mod 6)", resp. "(mod 3)". - M. F. Hasler, Sep 03 2016
The sequence is infinite, by Shiu's theorem. - Jonathan Sondow, Jun 22 2017

Examples

			a(6) = 1741 because this number is the first in a sequence of 6 consecutive primes all of the form 3n + 1.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", A4

Crossrefs

Programs

  • Mathematica
    p = 0; Do[a = Table[-1, {n}]; k = Max[1, p]; While[Union[a] != {1}, k = NextPrime[k]; a = Take[AppendTo[a, Mod[k, 3]], -n]]; p = NestList[NextPrime[#, -1] &, k, n]; Print[p[[-2]]]; p = p[[-1]], {n, 1, 18}] (* Robert G. Wilson v, updated by Michael De Vlieger, Sep 03 2016 *)
    Table[k = 1; While[Total@ Boole@ Map[Mod[#, 6] == 1 &, NestList[NextPrime, Prime@ k, n - 1]] != n, k++]; Prime@ k, {n, 12}] (* Michael De Vlieger, Sep 03 2016 *)
  • PARI
    m=c=o=0; forprime(p=1,, p%6 != 1 && (!c||!c=0) && next; c||o=p; c++>m||next; m++; print1(", ",o)) \\ M. F. Hasler, Sep 03 2016

Formula

a(n) <= A055625(n). - Zak Seidov, Aug 29 2016
a(n) = A000040(A247967(n)). a(n) = min { A055625(k); k >= n }. - M. F. Hasler, Sep 03 2016

Extensions

More terms from Don Reble, Nov 16 2003
More terms from Jens Kruse Andersen, May 30 2006
Definition clarified by Zak Seidov, Jun 19 2017

A057619 Initial prime in first sequence of n primes congruent to 3 modulo 4.

Original entry on oeis.org

3, 7, 199, 199, 463, 463, 463, 36551, 39607, 183091, 241603, 241603, 241603, 9177431, 9177431, 95949311, 105639091, 341118307, 727334879, 727334879, 1786054147, 1786054147, 22964264027, 54870713243, 79263248027, 113391385603
Offset: 1

Views

Author

Robert G. Wilson v, Oct 09 2000

Keywords

Comments

The sequence is infinite, by Shiu's theorem. - Jonathan Sondow, Jun 22 2017

Examples

			a(13) = 241603 because this number is the first in a sequence of 13 consecutive primes all of the form 4n + 3.
		

References

  • R. K. Guy, "Unsolved Problems in Number Theory", A4

Crossrefs

Programs

  • Mathematica
    NextPrime[ n_Integer ] := Module[ {k = n + 1}, While[ ! PrimeQ[ k ], k++ ]; Return[ k ] ]; PrevPrime[ n_Integer ] := Module[ {k = n - 1}, While[ ! PrimeQ[ k ], k-- ]; Return[ k ] ]; p = 0; Do[ a = Table[ -1, {n} ]; k = Max[ 1, p ]; While[ Union[ a ] != {3}, k = NextPrime[ k ]; a = Take[ AppendTo[ a, Mod[ k, 4 ] ], -n ] ]; p = NestList[ PrevPrime, k, n ]; Print[ p[ [ -2 ] ] ]; p = p[ [ -1 ] ], {n, 1, 18} ]
    With[{prs=Table[If[Mod[Prime[n],4]==3,1,0],{n,4646*10^6}]},Prime/@ Table[ SequencePosition[prs,PadRight[{},k,1],1][[1,1]],{k,26}]] (* The program will take a long time to run and requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 28 2017 *)

Extensions

More terms from Don Reble, Nov 16 2003
More terms from Jens Kruse Andersen, May 29 2006

A162865 Initial prime of exactly nine consecutive primes congruent to 1 modulo 4.

Original entry on oeis.org

11593, 206953, 315257, 541097, 906541, 992393, 1124993, 1410361, 1595081, 1781569, 1872049, 2043329, 2090353, 2312749, 2381657, 2481509, 2497289, 2718389, 2758109, 2772409, 2976397, 3863473, 3868849, 4027957, 4042673, 4375141, 4464841, 4547581, 4606153
Offset: 1

Views

Author

Rick L. Shepherd, Jul 15 2009

Keywords

Comments

The table provides all 8919 [=A092660(9)] terms less than 10^9.
If 10 or more consecutive primes are all congruent to 1 modulo 4, none of them is a member of this sequence. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    m9Q[l_]:=Module[{ms=Mod[l,4]},First[ms]!=1&&Last[ms]!=1&&Union[Take[ ms,{2,10}]]=={1}]; Transpose[Select[Partition[ Prime[Range[ 290000]], 11,1],m9Q]][[2]] (* Harvey P. Dale, Oct 23 2011 *)

A057632 Initial prime in first sequence of n primes congruent to 3 modulo 8.

Original entry on oeis.org

3, 491, 2243, 42299, 274123, 4310083, 4310083, 9065867, 547580443, 1885434347, 8674616939, 11312238283, 19201563659, 619849118491, 4056100954547, 13721202685691, 119254168189363, 276151474703651, 2189798979924331, 3153425741761723
Offset: 1

Views

Author

Robert G. Wilson v, Oct 10 2000

Keywords

Examples

			a(3) = 2243 because this number is the first in a sequence of 3 consecutive primes all of the form 8*n + 3.
		

Crossrefs

Cf. A363017 (indices), A057624 (with 1 modulo 4).

Programs

  • Mathematica
    NextPrime[ n_Integer ] := Module[ {k = n + 1}, While[ ! PrimeQ[ k ], k++ ]; Return[ k ] ]; PrevPrime[ n_Integer ] := Module[ {k = n - 1}, While[ ! PrimeQ[ k ], k-- ]; Return[ k ] ]; p = 0; Do[ a = Table[ -1, {n} ]; k = Max[ 1, p ]; While[ Union[ a ] != {3}, k = NextPrime[ k ]; a = Take[ AppendTo[ a, Mod[ k, 8 ] ], -n ] ]; p = NestList[ PrevPrime, k, n ]; Print[ p[ [ -2 ] ] ]; p = p[ [ -1 ] ], {n, 1, 9} ]

Extensions

More terms from Jens Kruse Andersen, May 28 2006
a(16)-a(18) from Giovanni Resta, Aug 04 2013
a(19)-a(20) from Martin Ehrenstein, May 28 2023

A363016 a(n) is the least integer k such that the k-th, (k+1)-th, ..., (k+n-1)-th primes are congruent to 1 mod 4.

Original entry on oeis.org

3, 6, 24, 77, 378, 1395, 1395, 1395, 1395, 31798, 61457, 240748, 800583, 804584, 804584, 804584, 16118548, 16138563, 16138563, 56307979, 56307979, 56307979, 56307979, 56307979, 3511121443, 3511121443, 26284355567, 26284355567, 26284355567, 118027458557, 118027458557, 118027458557, 118027458557
Offset: 1

Views

Author

Léo Gratien, May 13 2023

Keywords

Comments

a(n) is also the minimal rank where n consecutive 1's appear in A023512.
The sequence is infinite by Shiu's theorem.

Examples

			For n=3, a(3) = 24 because prime(24)+1=90, prime(25)+1=98, and prime(26)+1=102 are the first 3 consecutive primes p such that p+1 is divisible by 2 and not by 4.
		

Crossrefs

Cf. A363017 (3 mod 8).

Formula

a(n) = A000720(A057624(n)). - Amiram Eldar, May 13 2023

A376396 Triangle read by rows: the n-th row gives the least sequence of n consecutive primes all of the form 4*m + 1.

Original entry on oeis.org

5, 13, 17, 89, 97, 101, 389, 397, 401, 409, 2593, 2609, 2617, 2621, 2633, 11593, 11597, 11617, 11621, 11633, 11657, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11593, 11597, 11617, 11621, 11633, 11657, 11677, 11681, 11689
Offset: 1

Views

Author

Stefano Spezia, Sep 22 2024

Keywords

Comments

Guy writes that the terms of the 9th row have been found by De Haan. Moreover, Guy gives the terms of the 11th row: 766261, 766273, 766277, 766301, 766313, 766321, 766333, 766357, 766361, 766369, 766373.

Examples

			The triangle begins as:
       5;
      13,     17;
      89,     97,    101;
     389,    397,    401,    409;
    2593,   2609,   2617,   2621,   2633;
   11593,  11597,  11617,  11621,  11633,  11657;
   11593,  11597,  11617,  11621,  11633,  11657,  11677;
   11593,  11597,  11617,  11621,  11633,  11657,  11677,  11681;
   11593,  11597,  11617,  11621,  11633,  11657,  11677,  11681,  11689;
  373649, 373657, 373661, 373669, 373693, 373717, 373721, 373753, 373757, 373777;
  ...
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, 2nd. ed., Section A4.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 11593 at. p. 173.

Crossrefs

Cf. A002144, A016813, A057624 (1st column), A145986 (right hand column).

Programs

  • Mathematica
    kold=1; row[n_]:=Module[{r={}}, k=kold; While[Mod[Prime[k],4]!=1, k++]; While[Product[Boole[Mod[Prime[k+i],4]==1], {i,0,n-1}]!=1, k++]; kold=k; Table[Prime[i+k], {i,0,n-1}]]; Array[row,9]//Flatten
Showing 1-7 of 7 results.