cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A057655 The circle problem: number of points (x,y) in square lattice with x^2 + y^2 <= n.

Original entry on oeis.org

1, 5, 9, 9, 13, 21, 21, 21, 25, 29, 37, 37, 37, 45, 45, 45, 49, 57, 61, 61, 69, 69, 69, 69, 69, 81, 89, 89, 89, 97, 97, 97, 101, 101, 109, 109, 113, 121, 121, 121, 129, 137, 137, 137, 137, 145, 145, 145, 145, 149, 161, 161, 169, 177, 177, 177
Offset: 0

Views

Author

N. J. A. Sloane, Oct 15 2000

Keywords

Examples

			a(0) = 1 (counting origin).
a(1) = 5 since 4 points lie on the circle of radius sqrt(1) + origin.
a(2) = 9 since 4 lattice points lie on the circle w/radius = sqrt(2) (along diagonals) + 4 points inside the circle + origin. - _Wesley Ivan Hurt_, Jan 10 2013
		

References

  • C. Alsina and R. B. Nelsen, Charming Proofs: A Journey Into Elegant Mathematics, Math. Assoc. Amer., 2010, p. 42.
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.
  • F. Fricker, Einfuehrung in die Gitterpunktlehre, Birkhäuser, Boston, 1982.
  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 5.
  • E. Kraetzel, Lattice Points, Kluwer, Dordrecht, 1988.
  • C. D. Olds, A. Lax and G. P. Davidoff, The Geometry of Numbers, Math. Assoc. Amer., 2000, p. 51.
  • W. Sierpiński, Elementary Theory of Numbers, Elsevier, North-Holland, 1988.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 245-246.

Crossrefs

Partial sums of A004018. Cf. A014198, A057656, A057961, A057962, A122510. For another version see A000328.
Cf. A038589 (for hexagonal lattice).

Programs

  • Haskell
    a057655 n = length [(x,y) | x <- [-n..n], y <- [-n..n], x^2 + y^2 <= n]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Maple
    N:= 1000: # to get a(0) to a(N)
    R:= Array(0..N):
    for a from 0 to floor(sqrt(N)) do
      for b from 0 to floor(sqrt(N-a^2)) do
        r:= a^2 + b^2;
        R[r]:= R[r] + (2 - charfcn[0](a))*(2 - charfcn[0](b));
      od
    od:
    convert(map(round,Statistics:-CumulativeSum(R)),list); # Robert Israel, Sep 29 2014
  • Mathematica
    f[n_] := 1 + 4Sum[ Floor@ Sqrt[n - k^2], {k, 0, Sqrt[n]}]; Table[ f[n], {n, 0, 60}] (* Robert G. Wilson v, Jun 16 2006 *)
    Accumulate[ SquaresR[2, Range[0, 55]]] (* Jean-François Alcover, Feb 24 2012 *)
    CoefficientList[Series[EllipticTheta[3,0,x]^2/(1-x), {x, 0, 100}], x] (* Vaclav Kotesovec, Sep 29 2014 after Robert Israel *)
  • PARI
    a(n)=sum(x=-n,n,sum(y=-n,n,if((sign(x^2+y^2-n)+1)*sign(x^2+y^2-n),0,1)))
    
  • PARI
    a(n)=1+4*sum(k=0,sqrtint(n), sqrtint(n-k^2) ); /* Benoit Cloitre, Oct 08 2012 */
    
  • Python
    from math import isqrt
    def A057655(n): return 1+(sum(isqrt(n-k**2) for k in range(isqrt(n)+1))<<2) # Chai Wah Wu, Jul 31 2023

Formula

a(n) = 1 + 4*{ [n/1] - [n/3] + [n/5] - [n/7] + ... }. - Gauss
a(n) = 1 + 4*Sum_{ k = 0 .. [sqrt(n)] } [ sqrt(n-k^2) ]. - Liouville (?)
a(n) - Pi*n = O(sqrt(n)) (Gauss). a(n) - Pi*n = O(n^c), c = 23/73 + epsilon ~ 0.3151 (Huxley). If a(n) - Pi*n = O(n^c) then c > 1/4 (Landau, Hardy). It is conjectured that a(n) - Pi*n = O(n^(1/4 + epsilon)) for all epsilon > 0.
a(n) = A014198(n) + 1.
a(n) = A122510(2,n). - R. J. Mathar, Apr 21 2010
a(n) = 1 + sum((floor(1/(k+1)) + 4 * floor(cos(Pi * sqrt(k))^2) - 4 * floor(cos(Pi * sqrt(k/2))^2) + 8 * sum((floor(cos(Pi * sqrt(i))^2) * floor(cos(Pi * sqrt(k-i))^2)), i = 1..floor(k/2))), k = 1..n). - Wesley Ivan Hurt, Jan 10 2013
G.f.: theta_3(0,x)^2/(1-x) where theta_3 is a Jacobi theta function. - Robert Israel, Sep 29 2014
a(n^2) = A000328(n). - R. J. Mathar, Aug 03 2025
Showing 1-1 of 1 results.