A057723 Sum of positive divisors of n that are divisible by every prime that divides n.
1, 2, 3, 6, 5, 6, 7, 14, 12, 10, 11, 18, 13, 14, 15, 30, 17, 24, 19, 30, 21, 22, 23, 42, 30, 26, 39, 42, 29, 30, 31, 62, 33, 34, 35, 72, 37, 38, 39, 70, 41, 42, 43, 66, 60, 46, 47, 90, 56, 60, 51, 78, 53, 78, 55, 98, 57, 58, 59, 90, 61, 62, 84, 126, 65, 66, 67, 102, 69, 70
Offset: 1
Examples
The divisors of 12 that are divisible by both 2 and 3 are 6 and 12. So a(12) = 6 + 12 = 18.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- József Sándor and Krassimir Atanassov, Some new arithmetic functions, Notes on Number Theory and Discrete Mathematics, Volume 30, 2024, Number 4, Pages 851-856. See sigma- function.
Crossrefs
Programs
-
Magma
[&*PrimeDivisors(n)*SumOfDivisors(n div &*PrimeDivisors(n)): n in [1..70]]; // Vincenzo Librandi, May 14 2015
-
Maple
seq(mul(f[1]*(f[1]^f[2]-1)/(f[1]-1), f = ifactors(n)[2]), n = 1 .. 100); # Robert Israel, May 13 2015
-
Mathematica
Table[(b = Times @@ FactorInteger[n][[All, 1]])*DivisorSigma[1, n/b], {n, 70}] (* Ivan Neretin, May 13 2015 *) f[p_, e_] := (p^(e+1)-1)/(p-1) - 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 15 2023 *)
-
PARI
a(n) = {my(f = factor(n)); for (i=1, #f~, f[i,2]=1); my(pp = factorback(f)); sumdiv(n, d, if (! (d % pp), d, 0));} \\ Michel Marcus, May 14 2015
Formula
If n = Product p_i^e_i then a(n) = Product (p_i + p_i^2 + ... + p_i^e_i).
Dirichlet g.f.: zeta(s) * zeta(s-1) * Product(p prime, 1 - p^(-s) + p^(1-2*s)). - Robert Israel, May 13 2015
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = A330596 = Product_{primes p} (1 - 1/p^2 + 1/p^3) = 0.7485352596823635646442150486379106016416403430053244045... - Vaclav Kotesovec, Dec 18 2019
a(n) = Sum_{d|n, rad(d)=rad(n)} d. - R. J. Mathar, Jun 02 2020
Lim_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k = Product_{p prime}(1 + 1/(p*(p^2-1))) = 1.231291... (A065487). - Amiram Eldar, Jun 10 2020
a(n) = Sum_{d|n, gcd(d, n/d) = 1} (-1)^omega(n/d) * sigma(d). - Ilya Gutkovskiy, Apr 15 2021