cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A057736 Primes p such that 2^p + 3 is prime.

Original entry on oeis.org

2, 3, 7, 67
Offset: 1

Views

Author

G. L. Honaker, Jr., Oct 29 2000

Keywords

Comments

The next term p is greater than 100000, corresponding to a prime 2^p + 3 with more than 30000 digits. - Ryan Propper, Aug 24 2005
Next term > 2205444. - Joerg Arndt, Mar 07 2021

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 67, p. 24, Ellipses, Paris 2008.

Crossrefs

Cf. A057737 (the corresponding primes).
Subsequence of A057732.

Programs

  • Mathematica
    Select[Prime[Range[20]],PrimeQ[2^#+3]&] (* Harvey P. Dale, Jun 06 2022 *)
  • Python
    from sympy import isprime, primerange
    def afind(limit):
      for p in primerange(2, limit+1):
        if isprime(2**p + 3): print(p, end=", ")
    afind(1000) # Michael S. Branicky, Mar 07 2021

A142247 Primes of the form 2^p - 1, 2^p + 1, 2^p - 3, or 2^p + 3, where p is prime.

Original entry on oeis.org

3, 5, 7, 11, 29, 31, 127, 131, 8191, 131071, 524287, 536870909, 2147483647, 2305843009213693951, 147573952589676412931, 618970019642690137449562111, 162259276829213363391578010288127
Offset: 1

Views

Author

Roger L. Bagula, Sep 18 2008

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := If[PrimeQ[2^Prime[n] - 1] || PrimeQ[2^Prime[n] + 1] || PrimeQ[2^Prime[n] - 3] || PrimeQ[2^Prime[n] + 3], {2^Prime[n] - 1, 2^Prime[n] + 1, 2^Prime[n] - 3, 2^Prime[n] + 3}, {}]; a = Flatten[Table[f[n], {n, 1, 100}]]; Union[Flatten[Table[If[PrimeQ[a[[n]]], a[[n]], {}], {n, 1, Length[a]}]]]

Formula

Union of A000668, A172041, and A057737. - Jason Yuen, Oct 01 2024
Showing 1-2 of 2 results.