cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A057780 Multiples of 3 that are one less than a perfect square.

Original entry on oeis.org

0, 3, 15, 24, 48, 63, 99, 120, 168, 195, 255, 288, 360, 399, 483, 528, 624, 675, 783, 840, 960, 1023, 1155, 1224, 1368, 1443, 1599, 1680, 1848, 1935, 2115, 2208, 2400, 2499, 2703, 2808, 3024, 3135, 3363, 3480, 3720, 3843, 4095, 4224, 4488, 4623, 4899, 5040
Offset: 1

Views

Author

Benjamin Geiger (benjamin_geiger(AT)yahoo.com), Nov 02 2000

Keywords

Comments

Also, numbers of the form 9*m^2+6*m, m an integer. - Jason Kimberley, Nov 08 2012
k is in this list iff k+1 is in the support of A033684. - Jason Kimberley, Nov 13 2012
Exponents in the expansion of Product_{n >= 1} (1 - q^(6*n))^2 * (1 - q ^(9*n)) * (1 - q^(36*n))/((1 - q^(3*n))*(1 - q^(12*n))*(1 - q^(18*n))) = 1 + q^3 + q^15 + q^24 + q^48 + q^63 + q^99 + ... (see Oliver, Theorem 1.1). - Peter Bala, Jan 06 2025

Crossrefs

Numbers of the form 9n^2+kn, for integer n: A016766 (k=0), A132355 (k=2), A185039 (k=4), this sequence (k=6), A218864 (k=8). - Jason Kimberley, Nov 08 2012

Programs

  • Magma
    a:=func;[0]cat[a(n*m):m in[-1, 1],n in[1..24]]; // Jason Kimberley, Nov 09 2012
    
  • Mathematica
    Select[3*Range[0,2000],IntegerQ[Sqrt[#+1]]&] (* or *) LinearRecurrence[ {1,2,-2,-1,1},{0,3,15,24,48},50] (* Harvey P. Dale, Sep 10 2019 *)
  • PARI
    concat(0, Vec(3*x^2*(1+4*x+x^2)/((1-x)^3*(1+x)^2) + O(x^100))) \\ Colin Barker, Dec 26 2015

Formula

a(n) = A001651(n)^2 - 1 = 3 * A001082(n).
G.f.: 3*x^2*(1+4*x+x^2) / ((1-x)^3*(1+x)^2). - Colin Barker, Nov 24 2012
From Colin Barker, Dec 26 2015: (Start)
a(n) = 3/8*(6*n^2-2*((-1)^n+3)*n+(-1)^n-1).
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>5. (End)

Extensions

Since this is a list, offset corrected to 1 by Jason Kimberley, Nov 09 2012