A057820 First differences of sequence of consecutive prime powers (A000961).
1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, 4, 2, 6, 2, 2, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 6, 6, 4, 2, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 2, 8, 5, 1, 6, 6, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 6, 6, 4, 2, 4, 6, 2, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1
Keywords
Examples
Odd differences arise in pairs in neighborhoods of powers of 2, like {..,2039,2048,2053,..} gives {..,11,5,..}
Links
- Michael B. Porter, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a057820_list = zipWith (-) (tail a000961_list) a000961_list -- Reinhard Zumkeller, Mar 01 2012
-
Maple
A057820 := proc(n) A000961(n+1)-A000961(n) ; end proc: # R. J. Mathar, Sep 23 2016
-
Mathematica
Map[Length, Split[Table[Apply[LCM, Range[n]], {n, 1, 150}]]] (* Geoffrey Critzer, May 29 2015 *) Join[{1},Differences[Select[Range[500],PrimePowerQ]]] (* Harvey P. Dale, Apr 21 2022 *)
-
PARI
isA000961(n) = (omega(n) == 1 || n == 1) n_prev=1;for(n=2,500,if(isA000961(n),print(n-n_prev);n_prev=n)) \\ Michael B. Porter, Oct 30 2009
-
Python
from sympy import primepi, integer_nthroot def A057820(n): def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) r, k = m, f(m)+1 while r != k: r, k = k, f(k)+1 return r-m # Chai Wah Wu, Sep 12 2024
Extensions
Offset corrected and b-file adjusted by Reinhard Zumkeller, Mar 03 2012
Comments