cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A057771 Number of loops (quasigroups with an identity element) of order n.

Original entry on oeis.org

0, 1, 1, 1, 2, 6, 109, 23746, 106228849, 9365022303540, 20890436195945769617, 1478157455158044452849321016
Offset: 0

Views

Author

Christian G. Bower, Nov 01 2000

Keywords

Crossrefs

Extensions

a(8) from Juergen Buntrock (jubu(AT)jubu.com), Nov 03 2003.
a(9)-a(10) (from the McKay-Meynert-Myrvold article) from Richard Bean, Feb 17 2004
a(11) from Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009
a(0) prepended by Jianing Song, Oct 26 2019

A057991 Number of quasigroups of order n.

Original entry on oeis.org

1, 1, 1, 5, 35, 1411, 1130531, 12198455835, 2697818331680661, 15224734061438247321497, 2750892211809150446995735533513, 19464657391668924966791023043937578299025
Offset: 0

Views

Author

Christian G. Bower, Nov 01 2000

Keywords

Crossrefs

Extensions

More terms (from the McKay-Meynert-Myrvold article) from Richard Bean, Feb 17 2004
a(11) from Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009

A057994 Number of asymmetric quasigroups of order n.

Original entry on oeis.org

1, 1, 1, 0, 16, 1303, 1127628
Offset: 0

Views

Author

Christian G. Bower, Nov 01 2000

Keywords

Crossrefs

A057992 Number of commutative quasigroups of order n.

Original entry on oeis.org

1, 1, 1, 3, 7, 11, 491, 6381, 10940111, 1225586965, 130025302505741, 252282619993126717, 2209617218725712597768722, 98758655816833782283724345637
Offset: 0

Views

Author

Christian G. Bower, Nov 01 2000

Keywords

Crossrefs

Extensions

Added a(7) = 6381, W. Edwin Clark, Jan 04 2011
a(8)-a(13) from Ian Wanless, Dec 08 2021

A057993 Number of self-converse quasigroups of order n.

Original entry on oeis.org

1, 1, 1, 3, 13, 81, 3883
Offset: 0

Views

Author

Christian G. Bower, Nov 01 2000

Keywords

Crossrefs

A057998 Number of asymmetric loops (quasigroups with an identity element).

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 61, 23374, 106185390
Offset: 0

Views

Author

Christian G. Bower, Nov 20 2000

Keywords

Crossrefs

Cf. A057996.

Extensions

a(8) from Juergen Buntrock (jubu(AT)eule.in-berlin.de), Nov 17 2003

A118127 Number of quasigroups of order <= n.

Original entry on oeis.org

1, 2, 3, 8, 43, 1454, 1131985, 12199587820, 2697830531268481, 15224736759268778589978, 2750892227033887206264514123491
Offset: 1

Views

Author

Jonathan Vos Post, May 12 2006

Keywords

Comments

A quasigroup is a groupoid G such that for all a and b in G, there exist unique c and d in G such that ac = b and da = b. Hence a quasigroup is not required to have an identity element, nor be associative. Equivalently, one can state that quasigroups are precisely groupoids whose multiplication tables are Latin squares (possibly empty).

Examples

			a(10) = 2750892227033887206264514123491 = 1 + 1 + 1 + 5 + 35 + 1411 + 1130531 + 12198455835 + 2697818331680661 + 15224734061438247321497 + 2750892211809150446995735533513.
		

Crossrefs

Formula

a(n) = SUM[i=0..n] A057991(i).

A328746 Number of loops of order n, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).

Original entry on oeis.org

0, 1, 1, 1, 2, 5, 72, 12151, 53146457
Offset: 0

Views

Author

Jianing Song, Oct 26 2019

Keywords

Crossrefs

For the number of group-like algebraic structures of order n, see:
Semigroups: A027851 or A001423 (commutative: A001426);
Monoids: A058129 or A058133 (commutative: A058131);
Quasigroups: A057991 or A058171 (commutative: A057992);
Loops: A057771 or this sequence (commutative: A089925);
Groups: A000001 (commutative: A000688);
Rings: A027623 or A038036 (commutative: A037289);
Rings with unity: A037291;
Fields: A069513.

Formula

a(n) = (A057771(n)+A057996(n))/2.
Showing 1-8 of 8 results.