cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058042 Trajectory of binary number 10110 under the operation 'Reverse and Add!' carried out in base 2.

Original entry on oeis.org

10110, 100011, 1010100, 1101001, 10110100, 11100001, 101101000, 110010101, 1011101000, 1101000101, 10111010000, 11000101101, 101111010000, 110010001101, 1011110100000, 1100001011101, 10111110100000
Offset: 0

Views

Author

N. J. A. Sloane, May 18 2001

Keywords

Comments

According to J. Walker, Ronald Sprague has proved that this trajectory does not contain a palindrome. [I would like a reference for this.] Another proof has been given by Klaus Brockhaus.
10110 is the smallest number with this property in base 2. The analogous number in base 10 is believed to be 196, but its trajectory (see A006960) has never been proved not to contain a palindrome.
The binary numbers have a regular pattern with cycle length 4:
a(4k) = 101^(k+1)010^(k+1) for k >= 1,
a(4k+1) = 1101^(k-1)0001^(k-1)01 for k >= 2,
a(4k+2) = 101^(k+1)010^(k+2) for k >= 0,
a(4k+3) = 110^(k+1)101^(k)01 for k >= 1, where ^ stands for repeated concatenation. - A.H.M. Smeets, Feb 03 2019
From A.H.M. Smeets, Feb 11 2019: (Start)
Pattern with cycle length 4 represented by contextfree grammars with production rules:
S_a -> 10 T_a 00, T_a -> 1 T_a 0 | 1101;
S_b -> 11 T_b 01, T_b -> 0 T_b 1 | 1000;
S_c -> 10 T_c 000, T_c -> 1 T_c 0 | 1101;
S_d -> 11 T_d 101, T_d -> 0 T_d 1 | 0010;
see also A058042 for similar grammars for the binary represented trajectory of 77. (End)

Crossrefs

See A061561 for the terms of A058042 written in base 10. Cf. A016016, A006960, A023108.

Programs

  • ARIBAS
    var m,c,rev: integer; end; m := 22; c := 1; bit_write(m); write(" "); rev := bit_reverse(m); while m <> rev and c < 25 do inc(c); m := m + rev; bit_write(m); write(" "); rev := bit_reverse(m); end;
    
  • Haskell
    a058042 = a007088 . a061561  -- Reinhard Zumkeller, Apr 21 2013
  • Mathematica
    Clear[a]; a[0] = 10110; a[n_] := a[n] = (m = IntegerDigits[ a[n-1] ]; m2 = FromDigits[m, 2]; IntegerDigits[ FromDigits[m // Reverse, 2] + m2, 2] // FromDigits); Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 03 2013 *)

Formula

a(n) = A007088(A061561(n)). - Reinhard Zumkeller, Apr 21 2013

Extensions

More terms from Klaus Brockhaus, May 27 2001