A061561 Trajectory of 22 under the Reverse and Add! operation carried out in base 2.
22, 35, 84, 105, 180, 225, 360, 405, 744, 837, 1488, 1581, 3024, 3213, 6048, 6237, 12192, 12573, 24384, 24765, 48960, 49725, 97920, 98685, 196224, 197757, 392448, 393981, 785664, 788733, 1571328, 1574397, 3144192, 3150333, 6288384, 6294525
Offset: 0
Links
Crossrefs
Cf. A035522 (trajectory of 1 in base 2), A058042 (trajectory of 22 in base 2, written in base 2), A075253 (trajectory of 77 in base 2), A075268 (trajectory of 442 in base 2), A077076 (trajectory of 537 in base 2), A077077 (trajectory of 775 in base 2), A066059 (trajectory of n in base 2 (presumably) does not reach a palindrome), A075252 (trajectory of n in base 2 does not reach a palindrome and (presumably) does not join the trajectory of any term m < n), A075153 (trajectory of 318 in base 4).
Programs
-
ARIBAS
m := 22; stop := 36; c := 0; while c < stop do write(m,","); k := bit_length(m); rev := 0; for i := 0 to k-1 do if bit_test(m,i) then rev := bit_set(rev,k-1-i); end; end; inc(c); m := m+rev; end;.
-
Haskell
a061561 n = a061561_list !! n a061561_list = iterate a055944 22 -- Reinhard Zumkeller, Apr 21 2013
-
Magma
trajectory:=function(init, steps, base) a:=init; S:=[a]; for n in [1..steps] do a+:=Seqint(Reverse(Intseq(a,base)),base); Append(~S, a); end for; return S; end function; trajectory(22, 35, 2); // Klaus Brockhaus, Dec 09 2009
-
Mathematica
binRA[n_] := If[Reverse[IntegerDigits[n, 2]] == IntegerDigits[n, 2], n, FromDigits[Reverse[IntegerDigits[n, 2]], 2] + n]; NestList[binRA, 22, 100] (* Adapted from Ben Branman's code for A213012, Alonso del Arte, Jun 02 2012 *)
-
PARI
{m=22; stop=36; c=0; while(c
0,d=divrem(k,2); k=d[1]; rev=2*rev+d[2]); c++; m=m+rev)}
Formula
a(0) = 22; a(1) = 35; for n > 1 and n = 2 (mod 4): a(n) = 6*2^(2*k)-3*2^k where k = (n+6)/4; n = 3 (mod 4): a(n) = 6*2^(2*k)+3*2^k-3 where k = (n+5)/4; n = 0 (mod 4): a(n) = 12*2^(2*k)-3*2^k where k = (n+4)/4; n = 1 (mod 4): a(n) = 12*2^(2*k)+9*2^k-3 where k = (n+3)/4. [Klaus Brockhaus, Sep 05 2002]
G.f.: (22+35*x+18*x^2-72*x^4-90*x^5-48*x^6-60*x^7+80*x^8+112*x^9) / ((1-x)*(1+x)*(1-2*x^2)*(1-2*x^4)). [Klaus Brockhaus, Sep 05 2002, edited Dec 09 2009]
a(n+1) = A055944(a(n)). - Reinhard Zumkeller, Apr 21 2013
Extensions
More terms from Klaus Brockhaus, May 27 2001
Comments