A058042 Trajectory of binary number 10110 under the operation 'Reverse and Add!' carried out in base 2.
10110, 100011, 1010100, 1101001, 10110100, 11100001, 101101000, 110010101, 1011101000, 1101000101, 10111010000, 11000101101, 101111010000, 110010001101, 1011110100000, 1100001011101, 10111110100000
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- T. Irvin, About Two Months of Computing, or An Addendum to Mr. Walker's Three Years of Computing, Aug 22 1995.
- Klaus Brockhaus, On the 'Reverse and Add!' algorithm in base 2
- David J. Seal, Proofs similar to base 2 for base 4, 11, 17 and 26
- J. Walker, Three Years Of Computing: Final Report On The Palindrome Quest
- Index entries for sequences related to Reverse and Add!
Programs
-
ARIBAS
var m,c,rev: integer; end; m := 22; c := 1; bit_write(m); write(" "); rev := bit_reverse(m); while m <> rev and c < 25 do inc(c); m := m + rev; bit_write(m); write(" "); rev := bit_reverse(m); end;
-
Haskell
a058042 = a007088 . a061561 -- Reinhard Zumkeller, Apr 21 2013
-
Mathematica
Clear[a]; a[0] = 10110; a[n_] := a[n] = (m = IntegerDigits[ a[n-1] ]; m2 = FromDigits[m, 2]; IntegerDigits[ FromDigits[m // Reverse, 2] + m2, 2] // FromDigits); Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 03 2013 *)
Formula
Extensions
More terms from Klaus Brockhaus, May 27 2001
Comments