A058060 Number of distinct prime factors of d(n), the number of divisors of n.
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
n = 120 = 8*3*5, d(n) = 16 = 2^4, so a(120)=1.
References
- József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter V, page 164.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5001
- E. Heppner, Über die Iteration von Teilerfunktionen, Journal für die reine und angewandte Mathematik, Vol. 265 (1974), pp. 176-182.
- G. J. Rieger, Über einige arithmetische Summen, Manuscripta Mathematica, Vol. 7 (1972), pp. 23-34.
Programs
-
Mathematica
Table[PrimeNu[DivisorSigma[0, n]], {n, 1, 100}] (* G. C. Greubel, May 05 2017 *)
-
PARI
a(n)=omega(numdiv(n)) \\ Charles R Greathouse IV, May 05 2017
Formula
Sum_{k=1..n} a(k) = c * n + O(sqrt(n) * log(n)^5), where c is a constant (Rieger, 1972; Heppner, 1974). - Amiram Eldar, Jan 15 2024
Extensions
Offset corrected by Sean A. Irvine, Jul 22 2022
Comments