cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058063 Number of prime factors (when counted with multiplicity) of sigma(n), the sum of divisors of n.

Original entry on oeis.org

0, 1, 2, 1, 2, 3, 3, 2, 1, 3, 3, 3, 2, 4, 4, 1, 3, 2, 3, 3, 5, 4, 4, 4, 1, 3, 4, 4, 3, 5, 5, 3, 5, 4, 5, 2, 2, 4, 4, 4, 3, 6, 3, 4, 3, 5, 5, 3, 2, 2, 5, 3, 4, 5, 5, 5, 5, 4, 4, 5, 2, 6, 4, 1, 4, 6, 3, 4, 6, 6, 5, 3, 2, 3, 3, 4, 6, 5, 5, 3, 2, 4, 4, 6, 5, 4, 5, 5, 4, 4, 5, 5, 7, 6, 5, 5, 3, 3, 4, 2, 3, 6, 4, 4, 7
Offset: 1

Views

Author

Labos Elemer, Nov 23 2000

Keywords

Examples

			n=35, sigma(35) = 35 + 5 + 7 + 1 = 48 = 2*2*2*2*3, so a(35)=5.
		

Crossrefs

Programs

  • Maple
    with(numtheory):a:=proc(n) if n=0 then 0 else bigomega(sigma(n)) fi end: seq(a(n), n=1..105); # Zerinvary Lajos, Apr 11 2008
  • Mathematica
    Array[PrimeOmega@ DivisorSigma[1, #] &, 105] (* Michael De Vlieger, Nov 08 2017 *)
  • PARI
    a(n) = bigomega(sigma(n)); \\ Michel Marcus, Nov 07 2017

Formula

a(n) = A001222(A000203(n)).
From Antti Karttunen, Feb 12 2020: (Start)
Additive with a(p^e) = A001222(A000203(p^e)) = A001222(1 + p + p^2 + ... + p^e).
a(n) = A000120(A332221(n)).
(End)

Extensions

Offset corrected by Antti Karttunen, Nov 07 2017