A058074 Integers m such that gcd(d(m),d(m+1)) = 1, where d(m) is number of positive divisors of m.
1, 3, 4, 8, 9, 15, 16, 24, 25, 35, 36, 48, 63, 64, 81, 100, 120, 121, 143, 144, 168, 169, 195, 196, 225, 255, 256, 289, 323, 361, 399, 400, 440, 441, 483, 484, 528, 529, 576, 625, 676, 728, 729, 783, 784, 840, 841, 899, 900, 960, 961, 1023, 1024, 1088, 1089
Offset: 1
Keywords
Examples
8 is included because d(8) = 4 is relatively prime to d(9) = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Jean-Marie De Koninck and Imre Kátai, On the coprimality of some arithmetic functions, Publications de l'Institut Mathématique, 2010 87(101):121-128.
Programs
-
Mathematica
Select[Range[1100],GCD[DivisorSigma[0,#],DivisorSigma[0,#+1]]==1&] (* Harvey P. Dale, Apr 04 2015 *)
-
PARI
lista(nn) = {for(n=1, nn, if (gcd(numdiv(n), numdiv(n+1)) == 1, print1(n, ", ")));} \\ Michel Marcus, May 19 2014
Extensions
Offset changed to 1 by Michel Marcus, May 20 2014
Name edited by Michel Marcus, Jan 12 2018
Comments