cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A060778 a(n) = gcd(tau(n+1), tau(n)), where tau = A000005.

Original entry on oeis.org

1, 2, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 4, 1, 1, 2, 2, 2, 2, 4, 2, 2, 1, 1, 4, 2, 2, 2, 2, 2, 2, 4, 4, 1, 1, 2, 4, 4, 2, 2, 2, 2, 6, 2, 2, 2, 1, 3, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 1, 1, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 6, 2, 4, 2, 2, 5, 1, 2, 2, 4, 4, 4, 4, 2, 2, 4, 2, 2, 4, 4, 4, 2, 2, 6, 3, 1, 2, 2, 2, 8, 4
Offset: 1

Views

Author

Labos Elemer, Apr 26 2001

Keywords

Crossrefs

Programs

  • Mathematica
    GCD@@@Partition[DivisorSigma[0,Range[110]],2,1] (* Harvey P. Dale, May 27 2014 *)
  • PARI
    a(n) = gcd(numdiv(n), numdiv(n+1)); \\ Michel Marcus, Jan 12 2018
    
  • Python
    from math import gcd
    from sympy import divisor_count
    def A060778(n): return gcd(divisor_count(n+1),divisor_count(n)) # Chai Wah Wu, Aug 12 2023

Formula

a(n) = gcd(A000005(n+1), A000005(n)).

A058075 Numbers k such that gcd(sigma(k), sigma(k+1)) = 1, where sigma(k) is sum of positive divisors of k.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 15, 16, 18, 24, 25, 31, 35, 36, 48, 63, 64, 72, 80, 81, 97, 99, 100, 120, 121, 127, 128, 143, 144, 162, 200, 224, 225, 241, 255, 256, 288, 289, 323, 337, 399, 400, 483, 511, 512, 528, 529, 575, 576, 577, 578, 624, 625, 675, 721, 722, 728, 729
Offset: 1

Views

Author

Leroy Quet, Nov 11 2000

Keywords

Examples

			8 is included because sigma(8) = 15 is relatively prime to sigma(9) = 13.
		

Crossrefs

Cf. A058074.

Programs

A130194 Let M = lower triangular matrix with 1's on and below the main diagonal, with columns multiplied by +1, +1, -1, -1, repeated; form M^2; read across rows of resulting triangle.

Original entry on oeis.org

1, 2, 1, -1, 2, 1, -4, -1, 2, 1, 1, -4, -1, 2, 1, 6, 1, -4, -1, 2, 1, -1, 6, 1, -4, -1, 2, 1, -8, -1, 6, 1, -4, -1, 2, 1, 1, -8, -1, 6, 1, -4, -1, 2, 1, 10, 1, -8, -1, 6, 1, -4, -1, 2, 1, -1, 10, 1, -8, -1, 6, 1, -4, -1, 2, 1, -12, -1, 10, 1, -8, -1, 6, 1, -4, -1, 2, 1
Offset: 1

Views

Author

Gary W. Adamson, May 16 2007

Keywords

Comments

A000012(signed)^2.
Left border = A009531: (1, 2, -1, -4, 1, 6, -1, ...).
Row sums = A130195: (1, 3, 2, -2, -1, 5, 4, ...).
Row sums of the unsigned triangle = A058074: (1, 3, 4, 8, 9, 15, ...).
A009531 in every column: (1, 2, -1, -4, 1, 6, -1, ...).

Examples

			First few rows of the triangle:
   1;
   2,  1;
  -1,  2,  1;
  -4, -1,  2,  1;
   1, -4, -1,  2,  1;
   6,  1, -4, -1,  2,  1;
  ...
		

Crossrefs

Programs

  • PARI
    trg(nn) = {vgf = x*(1+x)^2/(1+x^2)^2 + O(x^(nn+1)); m = matrix(nn, nn, i, j, if (i >= j, polcoeff(vgf, i-j+1))); for (n=1, nn, for (k=1, n, print1(m[n, k], ", ");); print(););} \\ Michel Marcus, Oct 03 2014

Extensions

More terms from Michel Marcus, Oct 03 2014

A364890 Least number k such that A060778(k) = n.

Original entry on oeis.org

1, 2, 49, 14, 80, 44, 529983, 104, 16640, 2511, 8212890624, 735, 1019423412224, 29888, 600624, 2295, 54020648488730624, 6075, 3018417549254328320, 5264, 123200, 24151040, 3264402128528250685620224, 5984, 1753599375, 689278976, 2310399, 156735, 27965083137654166225393025024, 180224, 11404289746101879774056466612224, 21735, 170853262335, 2035980763136, 207593229375, 223244
Offset: 1

Views

Author

Seiichi Manyama, Aug 12 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = my(x=1, nx=1, ny=2); while(gcd(nx, ny) != n, x++; nx=ny; ny=numdiv(x+1)); x;

Extensions

a(11),a(13),a(17),a(19),a(23)-a(36) from Max Alekseyev, Feb 18 2024
Showing 1-4 of 4 results.