cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060780 a(n) = gcd(sigma(n+1), sigma(n)), where sigma = A000203.

Original entry on oeis.org

1, 1, 1, 1, 6, 4, 1, 1, 1, 6, 4, 14, 2, 24, 1, 1, 3, 1, 2, 2, 4, 12, 12, 1, 1, 2, 8, 2, 6, 8, 1, 3, 6, 6, 1, 1, 2, 4, 2, 6, 6, 4, 4, 6, 6, 24, 4, 1, 3, 3, 2, 2, 6, 24, 24, 40, 10, 30, 12, 2, 2, 8, 1, 1, 12, 4, 2, 6, 48, 72, 3, 1, 2, 2, 4, 4, 24, 8, 2, 1, 1, 42, 28, 4, 12, 12, 60, 90, 18, 2, 56, 8
Offset: 1

Views

Author

Labos Elemer, Apr 26 2001

Keywords

Crossrefs

Programs

  • Maple
    seq(igcd(numtheory:-sigma(n+1),numtheory:-sigma(n)),n=1..100); # Robert Israel, Jul 03 2017
  • Mathematica
    Table[GCD[DivisorSigma[1, n + 1], DivisorSigma[1, n]] , {n, 1, 50}] (* G. C. Greubel, Jul 03 2017 *)
  • PARI
    a(n) = { gcd(sigma(n), sigma(n+1)) } \\ Harry J. Smith, Jul 11 2009

Formula

a(n) = gcd(A000203(n+1), A000203(n)).

Extensions

Name corrected by Robert Israel, Jul 03 2017

A058074 Integers m such that gcd(d(m),d(m+1)) = 1, where d(m) is number of positive divisors of m.

Original entry on oeis.org

1, 3, 4, 8, 9, 15, 16, 24, 25, 35, 36, 48, 63, 64, 81, 100, 120, 121, 143, 144, 168, 169, 195, 196, 225, 255, 256, 289, 323, 361, 399, 400, 440, 441, 483, 484, 528, 529, 576, 625, 676, 728, 729, 783, 784, 840, 841, 899, 900, 960, 961, 1023, 1024, 1088, 1089
Offset: 1

Views

Author

Leroy Quet, Nov 11 2000

Keywords

Comments

If k is a term then either k or k+1 is a square. If k is in A005574 then k^2 is a term. - Amiram Eldar, Aug 08 2020

Examples

			8 is included because d(8) = 4 is relatively prime to d(9) = 3.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1100],GCD[DivisorSigma[0,#],DivisorSigma[0,#+1]]==1&] (* Harvey P. Dale, Apr 04 2015 *)
  • PARI
    lista(nn) = {for(n=1, nn, if (gcd(numdiv(n), numdiv(n+1)) == 1, print1(n, ", ")));} \\ Michel Marcus, May 19 2014

Extensions

Offset changed to 1 by Michel Marcus, May 20 2014
Name edited by Michel Marcus, Jan 12 2018

A260963 Numbers n such that gcd(sigma(n), n*(n+1)/2 - sigma(n)) = 1, where sigma(n) is sum of positive divisors of n.

Original entry on oeis.org

1, 4, 9, 10, 16, 21, 22, 25, 34, 36, 46, 49, 57, 58, 64, 70, 81, 82, 85, 93, 94, 100, 106, 118, 121, 129, 130, 133, 142, 144, 154, 166, 169, 178, 201, 202, 205, 214, 217, 225, 226, 237, 238, 250, 253, 256, 262, 265, 274, 289, 298, 301, 309, 310, 322, 324, 325
Offset: 1

Views

Author

Paolo P. Lava, Aug 27 2015

Keywords

Examples

			sigma(10) = 18, 10*11/2 - sigma(10) = 55 - 18 = 37 and gcd(18,37) = 1 because 18 = 2*9 and 37 is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local n; for n from 1 to q do
    if gcd(sigma(n),n*(n+1)/2-sigma(n))=1 then print(n); fi; od; end: P(10^9);
  • Mathematica
    Select[Range@ 360, GCD[DivisorSigma[1, #], # (# + 1)/2 - DivisorSigma[1, #]] == 1 &] (* Michael De Vlieger, Aug 27 2015 *)
Showing 1-3 of 3 results.