cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A083538 a(n) = sigma(n)*sigma(n+1)/gcd(sigma(n+1), sigma(n))^2.

Original entry on oeis.org

3, 12, 28, 42, 2, 6, 120, 195, 234, 6, 21, 2, 84, 1, 744, 558, 78, 780, 210, 336, 72, 6, 10, 1860, 1302, 420, 35, 420, 60, 36, 2016, 336, 72, 72, 4368, 3458, 570, 210, 1260, 105, 112, 264, 231, 182, 156, 6, 372, 7068, 589, 744, 1764, 1323, 180, 15, 15, 6, 72, 6, 70
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Comments

a(n) = A060781(n)/A060780(n) = A083539(n)/A060780(n)^2; quotient when lcm(sigma(n+1), sigma(n)) is divided by gcd(sigma(n+1), sigma(n)).

Examples

			n=10: sigma(10)=18, sigma(11)=12, lcm(18, 12)=36, gcd(18, 12)=6, a(10) = 36/6 = 6.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x] t=Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}]
    Times@@#/(GCD@@#)^2&/@Partition[DivisorSigma[1,Range[60]],2,1] (* Harvey P. Dale, Feb 17 2016 *)
  • PARI
    a(n)=my(x=sigma(n),y=sigma(n+1)); x*y/gcd(x,y)^2 \\ Charles R Greathouse IV, Mar 09 2014

Extensions

Edited by N. J. A. Sloane, Apr 29 2007
Corrections by Charles R Greathouse IV, Mar 09 2014

A083539 a(n) = sigma(n) * sigma(n+1): product of sigma-values for consecutive integers.

Original entry on oeis.org

3, 12, 28, 42, 72, 96, 120, 195, 234, 216, 336, 392, 336, 576, 744, 558, 702, 780, 840, 1344, 1152, 864, 1440, 1860, 1302, 1680, 2240, 1680, 2160, 2304, 2016, 3024, 2592, 2592, 4368, 3458, 2280, 3360, 5040, 3780, 4032, 4224, 3696, 6552, 5616, 3456, 5952
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]; t=Table[f[w+1]*f[w], {w, 1, 128}]
    Times@@@Partition[DivisorSigma[1,Range[50]],2,1] (* Harvey P. Dale, May 21 2014 *)
  • PARI
    a(n)=sigma(n)*sigma(n+1) \\ Charles R Greathouse IV, Feb 14 2013

Formula

a(n) = A000203(A002378(n)). - Amiram Eldar, Jul 10 2024

A083540 Numbers k such that A083539(k) is a square; solutions x to sigma(x+1)*sigma(x)=y^2 for some y.

Original entry on oeis.org

14, 30, 51, 161, 186, 206, 223, 329, 552, 713, 759, 869, 957, 994, 995, 1248, 1334, 1364, 1634, 1715, 1819, 2093, 2133, 2584, 2685, 2820, 2821, 2974, 3115, 3145, 3485, 4212, 4308, 4312, 4364, 4408, 4649
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Examples

			x=30: sigma(30)=72, sigma(31)=32, product = 72*32 = 256*9 = 24^2.
		

Crossrefs

Programs

  • Mathematica
    Do[s=Sqrt[DivisorSigma[1, n+1]*DivisorSigma[1, n]]; If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Flatten[Position[Times@@@Partition[DivisorSigma[1,Range[5000]],2,1], ?(IntegerQ[Sqrt[#]]&)]] (* _Harvey P. Dale, Mar 07 2016 *)

A084307 a(n) is the least number x such that gcd(sigma(x), sigma(x+1)) = n.

Original entry on oeis.org

1, 13, 17, 6, 199, 5, 242, 27, 391, 57, 1296, 22, 882, 12, 648, 93, 175232, 89, 3872, 236, 195, 1032, 4875263, 14, 5739271, 467, 35377, 83, 1882384, 58, 3024, 308, 29240, 201, 1627208, 118, 79524, 147, 1682, 56, 46854024, 82, 229441, 1204, 2047, 6301, 83386957823
Offset: 1

Views

Author

Labos Elemer, Jun 13 2003

Keywords

Comments

a(47) > 10^9 if it exists. - Michel Marcus, Sep 01 2019

Examples

			n=9: GCD[sigma[x+1], sigma[x]]=5 holds for {391,799,800,881,...} of which the first is a(9)=391.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := GCD[DivisorSigma[1, x], DivisorSigma[1, x+1]] t=Table[0, {256}]; Do[s=f[n]; If[s<257&&t[[s]]==0, t[[s]]=n], {n, 1, 10000000}]; t
  • PARI
    a(n) = my(x=1, sx=sigma(x), y=2, sy=sigma(2)); while(gcd(sx, sy) != n, x++; y++; sx=sy; sy=sigma(y)); x; \\ Michel Marcus, Aug 28 2019

Extensions

a(41) from Rémy Sigrist, Aug 29 2019
a(42)-a(46) from Michel Marcus, Aug 30 2019
a(47) from Giovanni Resta, Oct 29 2019

A083541 Values of y from solutions to sigma(x+1)*sigma(x)=y^2, where A083539(x) = y^2 is a square number.

Original entry on oeis.org

24, 48, 84, 264, 288, 312, 336, 576, 960, 1152, 1440, 1440, 1440, 1440, 1680, 2100, 2160, 2688, 2640, 3360, 3024, 3360, 3360, 4320, 4320, 5376, 4032, 4464, 5040, 4788, 6048, 7392, 6720, 6840, 7644, 6300, 7440, 7560, 7020, 10080, 10080, 8064, 10080
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Do[s=Sqrt[DivisorSigma[1, n+1]*DivisorSigma[1, n]]; If[IntegerQ[s], Print[s]], {n, 1, 5000}]

Formula

a(n) = sqrt(sigma(A083540(n)) * sigma(1+A083540(n))).

A070010 GCD of consecutive values of sum-of-proper divisors.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 11, 1, 1, 1, 6, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 1, 23, 1, 1, 1, 1, 3, 1, 1, 5, 25, 1, 1, 1, 1, 3, 1, 1, 1, 1
Offset: 1

Views

Author

Labos Elemer, Apr 11 2002

Keywords

Crossrefs

Cf. A000203, A001065; GCD of various consecutive function values: A048586, A057467, A058515, A060778, A060780, A069896.

Programs

Formula

a(n) = gcd(A001065(n+1), A001065(n)).

A322569 a(n)=x is the least integer such that gcd(sigma(x), sigma(x+1)) = 2*n.

Original entry on oeis.org

13, 6, 5, 27, 57, 22, 12, 93, 89, 236, 1032, 14, 467, 83, 58, 308, 201, 118, 147, 56, 82, 1204, 6301, 69, 596, 1142, 106, 91, 4167, 87, 432, 381, 393, 1407, 348, 70, 5912, 453, 233, 417, 13692, 166, 56493, 1118, 88, 6987, 54048, 154, 1843, 4490, 6833, 2574, 633, 689, 1538
Offset: 1

Views

Author

Michel Marcus, Aug 29 2019

Keywords

Comments

Bisection of A084307.

Crossrefs

Programs

  • Magma
    sol:=[]; for n in [1..55] do k:=1; while Gcd(DivisorSigma(1,k),DivisorSigma(1,k+1)) ne 2*n do k:=k+1; end while; Append(~sol,k); end for; sol; // Marius A. Burtea, Aug 29 2019
  • Mathematica
    Module[{nn=60000,g},g=GCD@@@Partition[DivisorSigma[1,Range[nn]],2,1];Table[ Position[ g,2n,1,1],{n,55}]]//Flatten (* Harvey P. Dale, Jan 28 2023 *)
  • PARI
    a(n) = my(x=1); while(gcd(sigma(x), sigma(x+1)) != 2*n, x++); x;
    
Showing 1-7 of 7 results.