A083543 Duplicate of A083538.
3, 12, 28, 42, 2, 6, 120, 195, 234, 6, 21, 2, 84, 1, 744, 558, 78, 780, 210, 336, 72, 6, 10
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
f[x_] := DivisorSigma[1, x]; t=Table[f[w+1]*f[w], {w, 1, 128}] Times@@@Partition[DivisorSigma[1,Range[50]],2,1] (* Harvey P. Dale, May 21 2014 *)
a(n)=sigma(n)*sigma(n+1) \\ Charles R Greathouse IV, Feb 14 2013
n=25: prime(25)=97, prime(26)=101; a(25) = lcm(96,100)/gcd(96,100) = 2400/4 = 600.
P:= seq(ithprime(i),i=1..100): seq(ilcm(P[i+1]-1,P[i]-1)/igcd(P[i+1]-1,P[i]-1),i=1..99); # Robert Israel, Jun 11 2017
f[x_] := Prime[x]-1 Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}] (* Second program: *) Table[Apply[LCM[#1, #2]/GCD[#1, #2] &, Prime[n + {1, 0}] - 1], {n, 49}] (* Michael De Vlieger, Jun 11 2017 *)
first(n)=my(v=vector(n),p=2,k,g); forprime(q=3,, g=gcd(p-1,q-1); v[k++]=(p-1)*(q-1)/g^2; p=q; if(k==n, break)); v \\ Charles R Greathouse IV, Jun 11 2017
n=25: a(25) = (97-1)*(101-1) = 9600.
f[x_] := Prime[x]-1; Table[f[w+1]*f[w], {w, 1, 128}]
A083553(n) = ((prime(1+n)-1)*(prime(n)-1)); \\ Antti Karttunen, Dec 14 2024
19 is a term since phi(19) = 18, phi(20) = 8, 8*18 = 144 = 12^2.
f[x_] := EulerPhi[x]; Do[s=Sqrt[f[n+1]*f[n]]; If[IntegerQ[s], Print[n]], {n, 1, 5000}] Position[Partition[EulerPhi[Range[2700]],2,1],?(IntegerQ[GeometricMean[ #]]&),1,Heads->False]//Flatten (* _Harvey P. Dale, Sep 13 2020 *)
f[x_] := Prime[x+1]-Prime[x] Table[f[w+1]*f[w], {w, 1, 128}]
x=30: sigma(30)=72, sigma(31)=32, product = 72*32 = 256*9 = 24^2.
Do[s=Sqrt[DivisorSigma[1, n+1]*DivisorSigma[1, n]]; If[IntegerQ[s], Print[n]], {n, 1, 5000}] Flatten[Position[Times@@@Partition[DivisorSigma[1,Range[5000]],2,1], ?(IntegerQ[Sqrt[#]]&)]] (* _Harvey P. Dale, Mar 07 2016 *)
f[x_] := Prime[x+1]-Prime[x]; Table[LCM[f[w+1], f[w]], {w, 1, 128}] Table[LCM[(Prime[n + 1] - Prime[n]), Prime[n + 2] - Prime[n + 1]], {n, 100}] (* Vincenzo Librandi, Mar 15 2018 *) LCM@@#&/@Partition[Differences[Prime[Range[90]]],2,1] (* Harvey P. Dale, Oct 11 2020 *)
n=25: a(25) = lcm(97-1, 101-1) = lcm(96,100) = 2400.
f[x_] := Prime[x]-1; Table[LCM[f[w+1], f[w]], {w, 1, 128}]
a(n) = lcm(prime(n+1)-1, prime(n)-1); \\ Michel Marcus, Mar 15 2018
Do[s=Sqrt[DivisorSigma[1, n+1]*DivisorSigma[1, n]]; If[IntegerQ[s], Print[s]], {n, 1, 5000}]
Comments