cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A083543 Duplicate of A083538.

Original entry on oeis.org

3, 12, 28, 42, 2, 6, 120, 195, 234, 6, 21, 2, 84, 1, 744, 558, 78, 780, 210, 336, 72, 6, 10
Offset: 1

Views

Author

Keywords

A083539 a(n) = sigma(n) * sigma(n+1): product of sigma-values for consecutive integers.

Original entry on oeis.org

3, 12, 28, 42, 72, 96, 120, 195, 234, 216, 336, 392, 336, 576, 744, 558, 702, 780, 840, 1344, 1152, 864, 1440, 1860, 1302, 1680, 2240, 1680, 2160, 2304, 2016, 3024, 2592, 2592, 4368, 3458, 2280, 3360, 5040, 3780, 4032, 4224, 3696, 6552, 5616, 3456, 5952
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]; t=Table[f[w+1]*f[w], {w, 1, 128}]
    Times@@@Partition[DivisorSigma[1,Range[50]],2,1] (* Harvey P. Dale, May 21 2014 *)
  • PARI
    a(n)=sigma(n)*sigma(n+1) \\ Charles R Greathouse IV, Feb 14 2013

Formula

a(n) = A000203(A002378(n)). - Amiram Eldar, Jul 10 2024

A083555 Quotient of LCM of prime(n+1)-1 and prime(n)-1 and GCD of the same two numbers.

Original entry on oeis.org

2, 2, 6, 15, 30, 12, 72, 99, 154, 210, 30, 90, 420, 483, 598, 754, 870, 110, 1155, 1260, 156, 1599, 1804, 132, 600, 2550, 2703, 2862, 756, 72, 4095, 4420, 4692, 5106, 5550, 650, 702, 6723, 7138, 7654, 8010, 342, 9120, 2352, 9702, 1155, 1295, 12543, 12882
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Examples

			n=25: prime(25)=97, prime(26)=101; a(25) = lcm(96,100)/gcd(96,100) = 2400/4 = 600.
		

Crossrefs

Programs

  • Maple
    P:= seq(ithprime(i),i=1..100):
    seq(ilcm(P[i+1]-1,P[i]-1)/igcd(P[i+1]-1,P[i]-1),i=1..99); # Robert Israel, Jun 11 2017
  • Mathematica
    f[x_] := Prime[x]-1 Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}]
    (* Second program: *)
    Table[Apply[LCM[#1, #2]/GCD[#1, #2] &, Prime[n + {1, 0}] - 1], {n, 49}] (* Michael De Vlieger, Jun 11 2017 *)
  • PARI
    first(n)=my(v=vector(n),p=2,k,g); forprime(q=3,, g=gcd(p-1,q-1); v[k++]=(p-1)*(q-1)/g^2; p=q; if(k==n, break)); v \\ Charles R Greathouse IV, Jun 11 2017

Formula

a(n) = lcm(A006093(n+1), A006093(n))/gcd(A006093(n+1), A006093(n));
a(n) = A083554(n)/A058263(n).
a(n) = A051537(A006093(n+1), A006093(n)). - Robert Israel, Jun 11 2017

A083553 Product of prime(n+1)-1 and prime(n)-1.

Original entry on oeis.org

2, 8, 24, 60, 120, 192, 288, 396, 616, 840, 1080, 1440, 1680, 1932, 2392, 3016, 3480, 3960, 4620, 5040, 5616, 6396, 7216, 8448, 9600, 10200, 10812, 11448, 12096, 14112, 16380, 17680, 18768, 20424, 22200, 23400, 25272, 26892, 28552, 30616, 32040
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Comments

The conductor of x*prime(n) + y*prime(n+1); that is, for all k >= a(n), there exist nonnegative integers x and y such that k = x*prime(n) + y*prime(n+1). - T. D. Noe, Sep 22 2004

Examples

			n=25: a(25) = (97-1)*(101-1) = 9600.
		

References

  • David Bressoud and Stan Wagon, A Course in Computational Number Theory, Key College Pub., 2000, p. 46.

Crossrefs

Cf. A000040, A006093, A058263, A083538-A083555, A099407 (terms halved), A172042 [= A000010(a(n))], A256617.
One more than A037165.
Column 3 of A379010.

Programs

  • Mathematica
    f[x_] := Prime[x]-1; Table[f[w+1]*f[w], {w, 1, 128}]
  • PARI
    A083553(n) = ((prime(1+n)-1)*(prime(n)-1)); \\ Antti Karttunen, Dec 14 2024

Formula

a(n) = A006093(n+1)*A006093(n) = (prime(n+1)-1)*(prime(n)-1).
a(n) = A037165(n) + 1.
a(n) = 2*A099407(n). - Antti Karttunen, Dec 14 2024

A083545 Numbers k such that the geometric mean of the Euler totient function of k and k+1 is an integer.

Original entry on oeis.org

1, 3, 15, 19, 95, 104, 125, 164, 194, 255, 259, 341, 491, 495, 504, 512, 513, 584, 591, 629, 679, 755, 775, 975, 1024, 1147, 1247, 1254, 1260, 1313, 1358, 1463, 1469, 1538, 1615, 1728, 1919, 1962, 1970, 2047, 2071, 2090, 2204, 2299, 2321, 2345, 2404, 2625
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Examples

			19 is a term since phi(19) = 18, phi(20) = 8, 8*18 = 144 = 12^2.
		

Crossrefs

Programs

Formula

a(n) = x is such that sqrt(A000010(x)*A000010(x+1)) is an integer. Values of solutions x to phi(x) * phi(x+1) = A083542(x) = y^2.

A083550 Product of 2 consecutive prime differences of two successive terms of A001223.

Original entry on oeis.org

2, 4, 8, 8, 8, 8, 8, 24, 12, 12, 24, 8, 8, 24, 36, 12, 12, 24, 8, 12, 24, 24, 48, 32, 8, 8, 8, 8, 56, 56, 24, 12, 20, 20, 12, 36, 24, 24, 36, 12, 20, 20, 8, 8, 24, 144, 48, 8, 8, 24, 12, 20, 60, 36, 36, 12, 12, 24, 8, 20, 140, 56, 8, 8, 56, 84, 60, 20, 8, 24, 48, 48, 36, 24, 24, 48
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x+1]-Prime[x]
    Table[f[w+1]*f[w], {w, 1, 128}]

Formula

a(n) = A001223(n)*A001223(n+1) = (prime(n+1)-prime(n))*(prime(n+2)-prime(n+1)).

A083540 Numbers k such that A083539(k) is a square; solutions x to sigma(x+1)*sigma(x)=y^2 for some y.

Original entry on oeis.org

14, 30, 51, 161, 186, 206, 223, 329, 552, 713, 759, 869, 957, 994, 995, 1248, 1334, 1364, 1634, 1715, 1819, 2093, 2133, 2584, 2685, 2820, 2821, 2974, 3115, 3145, 3485, 4212, 4308, 4312, 4364, 4408, 4649
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Examples

			x=30: sigma(30)=72, sigma(31)=32, product = 72*32 = 256*9 = 24^2.
		

Crossrefs

Programs

  • Mathematica
    Do[s=Sqrt[DivisorSigma[1, n+1]*DivisorSigma[1, n]]; If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Flatten[Position[Times@@@Partition[DivisorSigma[1,Range[5000]],2,1], ?(IntegerQ[Sqrt[#]]&)]] (* _Harvey P. Dale, Mar 07 2016 *)

A083551 Least common multiple of 2 consecutive prime differences, of two successive terms of A001223.

Original entry on oeis.org

2, 2, 4, 4, 4, 4, 4, 12, 6, 6, 12, 4, 4, 12, 6, 6, 6, 12, 4, 6, 12, 12, 24, 8, 4, 4, 4, 4, 28, 28, 12, 6, 10, 10, 6, 6, 12, 12, 6, 6, 10, 10, 4, 4, 12, 12, 12, 4, 4, 12, 6, 10, 30, 6, 6, 6, 6, 12, 4, 10, 70, 28, 4, 4, 28, 42, 30, 10, 4, 12, 24, 24, 6, 12, 12, 24, 8, 8, 40, 10, 10, 10, 6, 12
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x+1]-Prime[x];  Table[LCM[f[w+1], f[w]], {w, 1, 128}]
    Table[LCM[(Prime[n + 1] - Prime[n]), Prime[n + 2] - Prime[n + 1]], {n, 100}] (* Vincenzo Librandi, Mar 15 2018 *)
    LCM@@#&/@Partition[Differences[Prime[Range[90]]],2,1] (* Harvey P. Dale, Oct 11 2020 *)

Formula

a(n) = lcm(A001223(n), A001223(n+1)).

A083554 Least common multiple of prime(n+1)-1 and prime(n)-1.

Original entry on oeis.org

2, 4, 12, 30, 60, 48, 144, 198, 308, 420, 180, 360, 840, 966, 1196, 1508, 1740, 660, 2310, 2520, 936, 3198, 3608, 1056, 2400, 5100, 5406, 5724, 3024, 1008, 8190, 8840, 9384, 10212, 11100, 3900, 4212, 13446, 14276, 15308, 16020, 3420, 18240, 9408
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Examples

			n=25: a(25) = lcm(97-1, 101-1) = lcm(96,100) = 2400.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Prime[x]-1; Table[LCM[f[w+1], f[w]], {w, 1, 128}]
  • PARI
    a(n) = lcm(prime(n+1)-1, prime(n)-1); \\ Michel Marcus, Mar 15 2018

Formula

a(n) = lcm(A006093(n+1), A006093(n)) = lcm(prime(n+1)-1, prime(n)-1).

A083541 Values of y from solutions to sigma(x+1)*sigma(x)=y^2, where A083539(x) = y^2 is a square number.

Original entry on oeis.org

24, 48, 84, 264, 288, 312, 336, 576, 960, 1152, 1440, 1440, 1440, 1440, 1680, 2100, 2160, 2688, 2640, 3360, 3024, 3360, 3360, 4320, 4320, 5376, 4032, 4464, 5040, 4788, 6048, 7392, 6720, 6840, 7644, 6300, 7440, 7560, 7020, 10080, 10080, 8064, 10080
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Do[s=Sqrt[DivisorSigma[1, n+1]*DivisorSigma[1, n]]; If[IntegerQ[s], Print[s]], {n, 1, 5000}]

Formula

a(n) = sqrt(sigma(A083540(n)) * sigma(1+A083540(n))).
Showing 1-10 of 15 results. Next