cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A083540 Numbers k such that A083539(k) is a square; solutions x to sigma(x+1)*sigma(x)=y^2 for some y.

Original entry on oeis.org

14, 30, 51, 161, 186, 206, 223, 329, 552, 713, 759, 869, 957, 994, 995, 1248, 1334, 1364, 1634, 1715, 1819, 2093, 2133, 2584, 2685, 2820, 2821, 2974, 3115, 3145, 3485, 4212, 4308, 4312, 4364, 4408, 4649
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Examples

			x=30: sigma(30)=72, sigma(31)=32, product = 72*32 = 256*9 = 24^2.
		

Crossrefs

Programs

  • Mathematica
    Do[s=Sqrt[DivisorSigma[1, n+1]*DivisorSigma[1, n]]; If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Flatten[Position[Times@@@Partition[DivisorSigma[1,Range[5000]],2,1], ?(IntegerQ[Sqrt[#]]&)]] (* _Harvey P. Dale, Mar 07 2016 *)

A083541 Values of y from solutions to sigma(x+1)*sigma(x)=y^2, where A083539(x) = y^2 is a square number.

Original entry on oeis.org

24, 48, 84, 264, 288, 312, 336, 576, 960, 1152, 1440, 1440, 1440, 1440, 1680, 2100, 2160, 2688, 2640, 3360, 3024, 3360, 3360, 4320, 4320, 5376, 4032, 4464, 5040, 4788, 6048, 7392, 6720, 6840, 7644, 6300, 7440, 7560, 7020, 10080, 10080, 8064, 10080
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Do[s=Sqrt[DivisorSigma[1, n+1]*DivisorSigma[1, n]]; If[IntegerQ[s], Print[s]], {n, 1, 5000}]

Formula

a(n) = sqrt(sigma(A083540(n)) * sigma(1+A083540(n))).

A083538 a(n) = sigma(n)*sigma(n+1)/gcd(sigma(n+1), sigma(n))^2.

Original entry on oeis.org

3, 12, 28, 42, 2, 6, 120, 195, 234, 6, 21, 2, 84, 1, 744, 558, 78, 780, 210, 336, 72, 6, 10, 1860, 1302, 420, 35, 420, 60, 36, 2016, 336, 72, 72, 4368, 3458, 570, 210, 1260, 105, 112, 264, 231, 182, 156, 6, 372, 7068, 589, 744, 1764, 1323, 180, 15, 15, 6, 72, 6, 70
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Comments

a(n) = A060781(n)/A060780(n) = A083539(n)/A060780(n)^2; quotient when lcm(sigma(n+1), sigma(n)) is divided by gcd(sigma(n+1), sigma(n)).

Examples

			n=10: sigma(10)=18, sigma(11)=12, lcm(18, 12)=36, gcd(18, 12)=6, a(10) = 36/6 = 6.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x] t=Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}]
    Times@@#/(GCD@@#)^2&/@Partition[DivisorSigma[1,Range[60]],2,1] (* Harvey P. Dale, Feb 17 2016 *)
  • PARI
    a(n)=my(x=sigma(n),y=sigma(n+1)); x*y/gcd(x,y)^2 \\ Charles R Greathouse IV, Mar 09 2014

Extensions

Edited by N. J. A. Sloane, Apr 29 2007
Corrections by Charles R Greathouse IV, Mar 09 2014

A092517 Product of tau values for consecutive integers.

Original entry on oeis.org

2, 4, 6, 6, 8, 8, 8, 12, 12, 8, 12, 12, 8, 16, 20, 10, 12, 12, 12, 24, 16, 8, 16, 24, 12, 16, 24, 12, 16, 16, 12, 24, 16, 16, 36, 18, 8, 16, 32, 16, 16, 16, 12, 36, 24, 8, 20, 30, 18, 24, 24, 12, 16, 32, 32, 32, 16, 8, 24, 24, 8, 24, 42, 28, 32, 16, 12, 24, 32, 16, 24, 24, 8, 24, 36
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 06 2004

Keywords

Comments

Number of divisors of the n-th oblong number. - Ray Chandler, Jun 23 2008
Number of positive solutions (x,y) for which n/x + (n+1)/y = 1. - Michel Lagneau, Jan 16 2014
Number of positive solutions for which 1/p + 1/q + 1/(p*q) = 1/n; set p=x and q=y-1 in the solutions (x,y) in the comment above. - Mo Li, Apr 27 2021
a(n) is the maximum number of b > 0, which allows us to write (n+1)^2 as a sum of n+1 parts. Each part is of the form b^c and c is an integer >= 0 independent for each part. For n = 2 this is 3^2 = 2^2 + 2^2 + 2^0 = 3^1 + 3^1 + 3^1 = 4^1 + 4^1 + 4^0 = 7^1 + 7^0 + 7^0, b = 2;3;4;7 and a(2) = 4. It is conjectured that for all n the number of possible b reaches a(n). - Thomas Scheuerle, Jan 12 2022

Crossrefs

Programs

  • Magma
    [ NumberOfDivisors(n^2+n) : n in [1..100]]; // Vincenzo Librandi, Apr 03 2011
    
  • Maple
    with(numtheory): seq(tau(n)*tau(n+1),n=1..73); # Zerinvary Lajos, Jan 22 2007
  • Mathematica
    Table[DivisorSigma[0,n^2+n],{n,100}] (* Giorgos Kalogeropoulos, Apr 28 2021 *)
    Times@@#&/@Partition[DivisorSigma[0,Range[80]],2,1] (* Harvey P. Dale, Apr 21 2022 *)
  • PARI
    a(n) = numdiv(n^2+n); \\ Michel Marcus, Jan 11 2020
    
  • Python
    from sympy import divisor_count
    def A092517(n): return divisor_count(n)*divisor_count(n+1) # Chai Wah Wu, Jan 06 2022

Formula

a(n) = A000005(n)*A000005(n+1) = A000005(n*(n+1)) = A000005(A002378(n)) = 2*A063123(n).

Extensions

Extended by Ray Chandler, Jun 23 2008

A083542 a(n) = phi(n+1)*phi(n), product of totients of two consecutive integers.

Original entry on oeis.org

1, 2, 4, 8, 8, 12, 24, 24, 24, 40, 40, 48, 72, 48, 64, 128, 96, 108, 144, 96, 120, 220, 176, 160, 240, 216, 216, 336, 224, 240, 480, 320, 320, 384, 288, 432, 648, 432, 384, 640, 480, 504, 840, 480, 528, 1012, 736, 672, 840, 640, 768, 1248, 936, 720, 960, 864, 1008
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Haskell
    a083542 n = a000010 n * a000010 (n + 1)
    a083542_list = zipWith (*) (tail a000010_list) a000010_list
    -- Reinhard Zumkeller, Apr 22 2012
    
  • Maple
    a:= n-> (p-> p(n)*p(n+1))(numtheory[phi]):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 21 2022
  • Mathematica
    Times @@ EulerPhi@ # & /@ Partition[Range@ 58, 2, 1] (* Michael De Vlieger, Mar 25 2017 *)
    Times@@@Partition[EulerPhi[Range[60]],2,1] (* Harvey P. Dale, Oct 29 2019 *)
  • PARI
    a(n) = eulerphi(n) * eulerphi(n+1); \\ Amiram Eldar, Jul 10 2024

Formula

a(n) = A000010(A002378(n)). - Amiram Eldar, Jul 10 2024
Sum_{k=1..n} a(k) = c * n^3 / 3 + O((n*log(n))^2), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474). - Amiram Eldar, Dec 09 2024
a(n) = A058515(n)*A066813(n). - Amiram Eldar, May 07 2025

A216626 Square array read by antidiagonals, T(n,k) = sum_{c|n,d|k} lcm(c,d) for n>=1, k>=1.

Original entry on oeis.org

1, 3, 3, 4, 7, 4, 7, 12, 12, 7, 6, 15, 10, 15, 6, 12, 18, 28, 28, 18, 12, 8, 28, 24, 27, 24, 28, 8, 15, 24, 30, 42, 42, 30, 24, 15, 13, 31, 32, 60, 16, 60, 32, 31, 13, 18, 39, 60, 56, 72, 72, 56, 60, 39, 18, 12, 42, 28, 51, 48, 70, 48, 51, 28, 42, 12, 28, 36
Offset: 1

Views

Author

Peter Luschny, Sep 12 2012

Keywords

Comments

T(n,n) = A064950(n) = sum_{d|n} d*tau(d^2).
T(n,1) = T(1,n) = A000203(n) = sigma(n).
T(n,2) = T(2,n) = A062731(n) = sigma(2*n).
T(n+1,n) = A083539(n) = sigma(n+1)*sigma(n).
T(prime(n),1) = A008864(n) = prime(n)+1.

Examples

			[-----1---2---3----4----5----6----7----8----9---10---11---12]
[ 1]  1,  3,  4,   7,   6,  12,   8,  15,  13,  18,  12,  28
[ 2]  3,  7, 12,  15,  18,  28,  24,  31,  39,  42,  36,  60
[ 3]  4, 12, 10,  28,  24,  30,  32,  60,  28,  72,  48,  70
[ 4]  7, 15, 28,  27,  42,  60,  56,  51,  91,  90,  84, 108
[ 5]  6, 18, 24,  42,  16,  72,  48,  90,  78,  48,  72, 168
[ 6] 12, 28, 30,  60,  72,  70,  96, 124,  84, 168, 144, 150
[ 7]  8, 24, 32,  56,  48,  96,  22, 120, 104, 144,  96, 224
[ 8] 15, 31, 60,  51,  90, 124, 120,  83, 195, 186, 180, 204
[ 9] 13, 39, 28,  91,  78,  84, 104, 195,  55, 234, 156, 196
[10] 18, 42, 72,  90,  48, 168, 144, 186, 234, 112, 216, 360
[11] 12, 36, 48,  84,  72, 144,  96, 180, 156, 216,  34, 336
[12] 28, 60, 70, 108, 168, 150, 224, 204, 196, 360, 336, 270
.
Displayed as a triangular array:
    1;
    3,  3;
    4,  7,  4;
    7, 12, 12,  7;
    6, 15, 10, 15,  6;
   12, 18, 28, 28, 18, 12;
    8, 28, 24, 27, 24, 28,  8;
   15, 24, 30, 42, 42, 30, 24, 15;
   13, 31, 32, 60, 16, 60, 32, 31, 13;
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    T:= (n, k) -> add(add(ilcm(c, d), c=divisors(n)), d=divisors(k)):
    seq (seq (T(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Sep 12 2012
  • Mathematica
    T[n_, k_] := Sum[LCM[c, d], {c, Divisors[n]}, {d, Divisors[k]}]; Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 25 2014 *)
  • Sage
    def A216626(n, k) :
        cp = cartesian_product([divisors(n), divisors(k)])
        return reduce(lambda x,y: x+y, map(lcm, cp))
    for n in (1..12): [A216626(n,k) for k in (1..12)]

A330322 a(n) = Sum_{i=1..n} sigma(i)*sigma(i+1), where sigma(n) = A000203(n) is the sum of the divisors of n.

Original entry on oeis.org

3, 15, 43, 85, 157, 253, 373, 568, 802, 1018, 1354, 1746, 2082, 2658, 3402, 3960, 4662, 5442, 6282, 7626, 8778, 9642, 11082, 12942, 14244, 15924, 18164, 19844, 22004, 24308, 26324, 29348, 31940, 34532, 38900, 42358, 44638, 47998, 53038, 56818, 60850
Offset: 1

Views

Author

N. J. A. Sloane, Dec 12 2019

Keywords

References

  • Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 163.

Crossrefs

Cf. A000203.
Partial sums of A083539.

Programs

  • Mathematica
    f[n_] := DivisorSigma[1, n] * DivisorSigma[1, n + 1]; Accumulate @ Array[f, 100] (* Amiram Eldar, Mar 08 2020 *)
    Accumulate[Table[DivisorSigma[1, n*(n + 1)], {n, 1, 50}]] (* Vaclav Kotesovec, Aug 18 2021 *)

Formula

a(n) ~ (5/6) * n^3. - Amiram Eldar, Mar 08 2020

A083549 Quotient if least common multiple (lcm) of cototient values of consecutive integers is divided by the greatest common divisor (gcd) of the same pair of consecutive numbers.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 12, 2, 6, 8, 8, 8, 56, 56, 8, 12, 12, 12, 12, 12, 12, 16, 80, 70, 126, 144, 16, 22, 22, 16, 208, 234, 198, 264, 24, 20, 12, 40, 24, 30, 30, 24, 56, 56, 24, 32, 224, 210, 570, 532, 28, 36, 60, 480, 672, 70, 30, 44, 44, 32, 864, 864, 544, 782, 46, 36, 900
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Examples

			n=33: cototient(33) = 33-20 = 13, cototient(34) = 34-16 = 18;
lcm(13,18) = 234, gcd(13,18) = 1, so a(34) = 234.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := x-EulerPhi[x]; Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 69}]
    (* Second program: *)
    Map[Apply[LCM, #]/Apply[GCD, #] &@ Map[# - EulerPhi@ # &, #] &, Partition[Range[69], 2, 1]] (* Michael De Vlieger, Mar 17 2018 *)

Formula

a(n) = lcm(A051953(n), A051952(n+1))/gcd(A051953(n), A051952(n+1)) = lcm(cototient(n+1), cototient(n))/A049586(n).
Showing 1-8 of 8 results.