cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A238453 Triangle read by rows: T(n,k) = A001088(n)/(A001088(k)*A001088(n-k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 4, 8, 8, 4, 1, 1, 2, 8, 8, 8, 2, 1, 1, 6, 12, 24, 24, 12, 6, 1, 1, 4, 24, 24, 48, 24, 24, 4, 1, 1, 6, 24, 72, 72, 72, 72, 24, 6, 1, 1, 4, 24, 48, 144, 72, 144, 48, 24, 4, 1, 1, 10, 40, 120, 240, 360, 360, 240, 120
Offset: 0

Views

Author

Tom Edgar, Feb 26 2014

Keywords

Comments

We assume that A001088(0)=1 since it would be the empty product.
These are the generalized binomial coefficients associated with Euler's totient function A000010.
Another name might be the totienomial coefficients.

Examples

			The first five terms in Euler's totient function are 1,1,2,2,4 and so T(4,2) = 2*2*1*1/((1*1)*(1*1))=4 and T(5,3) = 4*2*2*1*1/((2*1*1)*(1*1))=8.
The triangle begins
1
1 1
1 1 1
1 2 2 1
1 2 4 2 1
1 4 8 8 4 1
1 2 8 8 8 2 1
		

Crossrefs

Programs

  • Haskell
    a238453 n k = a238453_tabl !! n !! k
    a238453_row n = a238453_tabl !! n
    a238453_tabl = [1] : f [1] a000010_list where
       f xs (z:zs) = (map (div y) $ zipWith (*) ys $ reverse ys) : f ys zs
         where ys = y : xs; y = head xs * z
    -- Reinhard Zumkeller, Feb 27 2014
    
  • Mathematica
    f[n_] := Product[EulerPhi@ k, {k, n}]; Table[f[n]/(f[k] f[n - k]), {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 19 2016 *)
  • PARI
    T(n,k)={prod(i=1, k, eulerphi(n+1-i)/eulerphi(i))} \\ Andrew Howroyd, Nov 13 2018
  • Sage
    q=100 #change q for more rows
    P=[euler_phi(i) for i in [0..q]]
    [[prod(P[1:n+1])/(prod(P[1:k+1])*prod(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] #generates the triangle up to q rows.
    

Formula

T(n,k) = A001088(n)/(A001088(k)*A001088(n-k)).
T(n,k) = prod_{i=1..n} A000010(i)/(prod_{i=1..k} A000010(i)*prod_{i=1..n-k} A000010(i)).
T(n,k) = A000010(n)/n*(k/A000010(k)*T(n-1,k-1)+(n-k)/A000010(n-k)*T(n-1,k)).
T(n+1, 2) = A083542(n). - Michael Somos, Aug 26 2014
T(n,k) = Product_{i=1..k} (phi(n+1-i)/phi(i)), where phi is Euler's totient function (A000010). - Werner Schulte, Nov 14 2018

A058515 GCD of totients of consecutive integers.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 2, 8, 8, 2, 6, 2, 4, 2, 2, 2, 4, 4, 6, 6, 4, 4, 2, 2, 4, 4, 8, 12, 12, 18, 6, 8, 8, 4, 6, 2, 4, 2, 2, 2, 2, 2, 4, 8, 4, 2, 2, 8, 12, 4, 2, 2, 4, 30, 6, 4, 16, 4, 2, 2, 4, 4, 2, 2, 24, 36, 4, 4, 12, 12, 6, 2, 2, 2, 2, 2, 8, 2, 14, 8, 8, 8, 24, 4, 4, 2, 2, 8, 32, 6
Offset: 1

Views

Author

Labos Elemer, Dec 21 2000

Keywords

Examples

			For n = 61, gcd(phi(62), phi(61)) = gcd(30, 60) = 30, so a(61) = 30.
		

Crossrefs

Programs

  • Mathematica
    Map[GCD @@ # &, Partition[EulerPhi@ Range@ 98, 2, 1]] (* Michael De Vlieger, Aug 22 2017 *)
  • PARI
    a(n) = gcd(eulerphi(n), eulerphi(n+1)); \\ Michel Marcus, Dec 10 2013

Formula

a(n) = gcd(phi(n+1), phi(n)), where phi = A000010.
a(n) = A083542(n)/A066813(n). - Amiram Eldar, May 07 2025

Extensions

Offset corrected to 1 by Michel Marcus, Dec 10 2013

A083539 a(n) = sigma(n) * sigma(n+1): product of sigma-values for consecutive integers.

Original entry on oeis.org

3, 12, 28, 42, 72, 96, 120, 195, 234, 216, 336, 392, 336, 576, 744, 558, 702, 780, 840, 1344, 1152, 864, 1440, 1860, 1302, 1680, 2240, 1680, 2160, 2304, 2016, 3024, 2592, 2592, 4368, 3458, 2280, 3360, 5040, 3780, 4032, 4224, 3696, 6552, 5616, 3456, 5952
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]; t=Table[f[w+1]*f[w], {w, 1, 128}]
    Times@@@Partition[DivisorSigma[1,Range[50]],2,1] (* Harvey P. Dale, May 21 2014 *)
  • PARI
    a(n)=sigma(n)*sigma(n+1) \\ Charles R Greathouse IV, Feb 14 2013

Formula

a(n) = A000203(A002378(n)). - Amiram Eldar, Jul 10 2024

A066813 a(n) = lcm(phi(n), phi(n+1)).

Original entry on oeis.org

1, 2, 2, 4, 4, 6, 12, 12, 12, 20, 20, 12, 12, 24, 8, 16, 48, 18, 72, 24, 60, 110, 88, 40, 60, 36, 36, 84, 56, 120, 240, 80, 80, 48, 24, 36, 36, 72, 48, 80, 120, 84, 420, 120, 264, 506, 368, 336, 420, 160, 96, 312, 468, 360, 120, 72, 252, 812, 464, 240, 60, 180, 288, 96
Offset: 1

Views

Author

Benoit Cloitre, Jan 20 2002

Keywords

Crossrefs

Cf. A000010 (phi), A058515, A083542.

Programs

  • Mathematica
    LCM@@EulerPhi[#]&/@Partition[Range[100],2,1] (* Harvey P. Dale, May 07 2011 *)
  • PARI
    a(n) = { lcm(eulerphi(n), eulerphi(n+1)) } \\ Harry J. Smith, Mar 29 2010

Formula

a(n) = A083542(n)/A058515(n). - Amiram Eldar, May 07 2025

A083545 Numbers k such that the geometric mean of the Euler totient function of k and k+1 is an integer.

Original entry on oeis.org

1, 3, 15, 19, 95, 104, 125, 164, 194, 255, 259, 341, 491, 495, 504, 512, 513, 584, 591, 629, 679, 755, 775, 975, 1024, 1147, 1247, 1254, 1260, 1313, 1358, 1463, 1469, 1538, 1615, 1728, 1919, 1962, 1970, 2047, 2071, 2090, 2204, 2299, 2321, 2345, 2404, 2625
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Examples

			19 is a term since phi(19) = 18, phi(20) = 8, 8*18 = 144 = 12^2.
		

Crossrefs

Programs

Formula

a(n) = x is such that sqrt(A000010(x)*A000010(x+1)) is an integer. Values of solutions x to phi(x) * phi(x+1) = A083542(x) = y^2.

A083546 The geometric mean of the Euler totient function of 2 consecutive integers {k, k+1} when it is an integer.

Original entry on oeis.org

1, 2, 8, 12, 48, 48, 60, 80, 96, 128, 144, 180, 280, 240, 240, 288, 288, 288, 336, 288, 384, 360, 480, 480, 640, 720, 672, 600, 576, 720, 720, 720, 672, 864, 960, 864, 960, 1080, 1008, 1408, 1296, 960, 1008, 1320, 1260, 1056, 1440, 1200, 1728, 1440, 1296
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Examples

			12 is a term since sqrt(phi(19) * phi(20)) = sqrt(18 * 8) = sqrt(144) = 12.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[x]; Do[s=Sqrt[f[n+1]*f[n]]; If[IntegerQ[s], Print[s]], {n, 1, 5000}]
    Select[Sqrt[#]&/@(Times@@@Partition[EulerPhi[Range[3000]],2,1]),IntegerQ] (* Harvey P. Dale, Nov 04 2020 *)

Formula

a(n) = sqrt(A000010(x) * A000010(x+1)) = sqrt(phi(x) * phi(x+1)) = sqrt(A083542(x)) where x = A083545(n).

A330319 a(n) = Sum_{i=1..n} phi(i)*phi(i+1), where phi(n) = A000010(n) is Euler's totient function.

Original entry on oeis.org

1, 3, 7, 15, 23, 35, 59, 83, 107, 147, 187, 235, 307, 355, 419, 547, 643, 751, 895, 991, 1111, 1331, 1507, 1667, 1907, 2123, 2339, 2675, 2899, 3139, 3619, 3939, 4259, 4643, 4931, 5363, 6011, 6443, 6827, 7467, 7947, 8451, 9291, 9771, 10299, 11311, 12047, 12719, 13559, 14199, 14967, 16215, 17151, 17871, 18831
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 2019

Keywords

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 32.

Crossrefs

Partial sums of A083542.

Programs

  • Mathematica
    phi = EulerPhi[Range[56]]; Accumulate[Most[phi] * Rest[phi]] (* Amiram Eldar, Mar 05 2020 *)
  • PARI
    a(n) = sum(i=1, n, eulerphi(i)*eulerphi(i+1)); \\ Michel Marcus, Mar 05 2020

Formula

a(n) ~ (c/3) * n^3 + O(n^2*log(n)^2), where c = Product_{p prime}(1 - 2/p^2) (A065474). - Amiram Eldar, Mar 05 2020

A083547 a(n) = sqrt(sqrt(phi(A083546(n)) * phi(1+A083546(n)))), the 4th root of product of totients of terms and 1+terms of A082788.

Original entry on oeis.org

1, 12, 24, 36, 36, 60, 60, 72, 80, 96, 120, 120, 120, 144, 144, 168, 180, 240, 264, 360, 360, 432, 480, 504, 480, 480, 720, 720, 720, 720, 840, 840, 864, 840, 840, 840, 840, 960, 900, 960, 960, 1080, 1260, 1224, 1320, 1320, 1440, 1440, 1320, 1440, 1440, 1728
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[x]; Do[s=Sqrt[Sqrt[f[n+1]*f[n]]]; If[IntegerQ[s], Print[s]], {n, 1, 1000000}]

Extensions

a(29)-a(52) from Amiram Eldar, Apr 09 2021

A083549 Quotient if least common multiple (lcm) of cototient values of consecutive integers is divided by the greatest common divisor (gcd) of the same pair of consecutive numbers.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 12, 2, 6, 8, 8, 8, 56, 56, 8, 12, 12, 12, 12, 12, 12, 16, 80, 70, 126, 144, 16, 22, 22, 16, 208, 234, 198, 264, 24, 20, 12, 40, 24, 30, 30, 24, 56, 56, 24, 32, 224, 210, 570, 532, 28, 36, 60, 480, 672, 70, 30, 44, 44, 32, 864, 864, 544, 782, 46, 36, 900
Offset: 1

Views

Author

Labos Elemer, May 22 2003

Keywords

Examples

			n=33: cototient(33) = 33-20 = 13, cototient(34) = 34-16 = 18;
lcm(13,18) = 234, gcd(13,18) = 1, so a(34) = 234.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := x-EulerPhi[x]; Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 69}]
    (* Second program: *)
    Map[Apply[LCM, #]/Apply[GCD, #] &@ Map[# - EulerPhi@ # &, #] &, Partition[Range[69], 2, 1]] (* Michael De Vlieger, Mar 17 2018 *)

Formula

a(n) = lcm(A051953(n), A051952(n+1))/gcd(A051953(n), A051952(n+1)) = lcm(cototient(n+1), cototient(n))/A049586(n).
Showing 1-9 of 9 results.