cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A083538 a(n) = sigma(n)*sigma(n+1)/gcd(sigma(n+1), sigma(n))^2.

Original entry on oeis.org

3, 12, 28, 42, 2, 6, 120, 195, 234, 6, 21, 2, 84, 1, 744, 558, 78, 780, 210, 336, 72, 6, 10, 1860, 1302, 420, 35, 420, 60, 36, 2016, 336, 72, 72, 4368, 3458, 570, 210, 1260, 105, 112, 264, 231, 182, 156, 6, 372, 7068, 589, 744, 1764, 1323, 180, 15, 15, 6, 72, 6, 70
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Comments

a(n) = A060781(n)/A060780(n) = A083539(n)/A060780(n)^2; quotient when lcm(sigma(n+1), sigma(n)) is divided by gcd(sigma(n+1), sigma(n)).

Examples

			n=10: sigma(10)=18, sigma(11)=12, lcm(18, 12)=36, gcd(18, 12)=6, a(10) = 36/6 = 6.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x] t=Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}]
    Times@@#/(GCD@@#)^2&/@Partition[DivisorSigma[1,Range[60]],2,1] (* Harvey P. Dale, Feb 17 2016 *)
  • PARI
    a(n)=my(x=sigma(n),y=sigma(n+1)); x*y/gcd(x,y)^2 \\ Charles R Greathouse IV, Mar 09 2014

Extensions

Edited by N. J. A. Sloane, Apr 29 2007
Corrections by Charles R Greathouse IV, Mar 09 2014

A058515 GCD of totients of consecutive integers.

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 6, 2, 8, 8, 2, 6, 2, 4, 2, 2, 2, 4, 4, 6, 6, 4, 4, 2, 2, 4, 4, 8, 12, 12, 18, 6, 8, 8, 4, 6, 2, 4, 2, 2, 2, 2, 2, 4, 8, 4, 2, 2, 8, 12, 4, 2, 2, 4, 30, 6, 4, 16, 4, 2, 2, 4, 4, 2, 2, 24, 36, 4, 4, 12, 12, 6, 2, 2, 2, 2, 2, 8, 2, 14, 8, 8, 8, 24, 4, 4, 2, 2, 8, 32, 6
Offset: 1

Views

Author

Labos Elemer, Dec 21 2000

Keywords

Examples

			For n = 61, gcd(phi(62), phi(61)) = gcd(30, 60) = 30, so a(61) = 30.
		

Crossrefs

Programs

  • Mathematica
    Map[GCD @@ # &, Partition[EulerPhi@ Range@ 98, 2, 1]] (* Michael De Vlieger, Aug 22 2017 *)
  • PARI
    a(n) = gcd(eulerphi(n), eulerphi(n+1)); \\ Michel Marcus, Dec 10 2013

Formula

a(n) = gcd(phi(n+1), phi(n)), where phi = A000010.
a(n) = A083542(n)/A066813(n). - Amiram Eldar, May 07 2025

Extensions

Offset corrected to 1 by Michel Marcus, Dec 10 2013

A083542 a(n) = phi(n+1)*phi(n), product of totients of two consecutive integers.

Original entry on oeis.org

1, 2, 4, 8, 8, 12, 24, 24, 24, 40, 40, 48, 72, 48, 64, 128, 96, 108, 144, 96, 120, 220, 176, 160, 240, 216, 216, 336, 224, 240, 480, 320, 320, 384, 288, 432, 648, 432, 384, 640, 480, 504, 840, 480, 528, 1012, 736, 672, 840, 640, 768, 1248, 936, 720, 960, 864, 1008
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Haskell
    a083542 n = a000010 n * a000010 (n + 1)
    a083542_list = zipWith (*) (tail a000010_list) a000010_list
    -- Reinhard Zumkeller, Apr 22 2012
    
  • Maple
    a:= n-> (p-> p(n)*p(n+1))(numtheory[phi]):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 21 2022
  • Mathematica
    Times @@ EulerPhi@ # & /@ Partition[Range@ 58, 2, 1] (* Michael De Vlieger, Mar 25 2017 *)
    Times@@@Partition[EulerPhi[Range[60]],2,1] (* Harvey P. Dale, Oct 29 2019 *)
  • PARI
    a(n) = eulerphi(n) * eulerphi(n+1); \\ Amiram Eldar, Jul 10 2024

Formula

a(n) = A000010(A002378(n)). - Amiram Eldar, Jul 10 2024
Sum_{k=1..n} a(k) = c * n^3 / 3 + O((n*log(n))^2), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474). - Amiram Eldar, Dec 09 2024
a(n) = A058515(n)*A066813(n). - Amiram Eldar, May 07 2025

A083545 Numbers k such that the geometric mean of the Euler totient function of k and k+1 is an integer.

Original entry on oeis.org

1, 3, 15, 19, 95, 104, 125, 164, 194, 255, 259, 341, 491, 495, 504, 512, 513, 584, 591, 629, 679, 755, 775, 975, 1024, 1147, 1247, 1254, 1260, 1313, 1358, 1463, 1469, 1538, 1615, 1728, 1919, 1962, 1970, 2047, 2071, 2090, 2204, 2299, 2321, 2345, 2404, 2625
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Examples

			19 is a term since phi(19) = 18, phi(20) = 8, 8*18 = 144 = 12^2.
		

Crossrefs

Programs

Formula

a(n) = x is such that sqrt(A000010(x)*A000010(x+1)) is an integer. Values of solutions x to phi(x) * phi(x+1) = A083542(x) = y^2.

A083546 The geometric mean of the Euler totient function of 2 consecutive integers {k, k+1} when it is an integer.

Original entry on oeis.org

1, 2, 8, 12, 48, 48, 60, 80, 96, 128, 144, 180, 280, 240, 240, 288, 288, 288, 336, 288, 384, 360, 480, 480, 640, 720, 672, 600, 576, 720, 720, 720, 672, 864, 960, 864, 960, 1080, 1008, 1408, 1296, 960, 1008, 1320, 1260, 1056, 1440, 1200, 1728, 1440, 1296
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Examples

			12 is a term since sqrt(phi(19) * phi(20)) = sqrt(18 * 8) = sqrt(144) = 12.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := EulerPhi[x]; Do[s=Sqrt[f[n+1]*f[n]]; If[IntegerQ[s], Print[s]], {n, 1, 5000}]
    Select[Sqrt[#]&/@(Times@@@Partition[EulerPhi[Range[3000]],2,1]),IntegerQ] (* Harvey P. Dale, Nov 04 2020 *)

Formula

a(n) = sqrt(A000010(x) * A000010(x+1)) = sqrt(phi(x) * phi(x+1)) = sqrt(A083542(x)) where x = A083545(n).
Showing 1-5 of 5 results.