cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A216624 Square array read by antidiagonals, T(n,k) = sum_{c|n,d|k} gcd(c,d) for n>=1, k>=1.

Original entry on oeis.org

1, 2, 2, 2, 5, 2, 3, 4, 4, 3, 2, 8, 6, 8, 2, 4, 4, 6, 6, 4, 4, 2, 10, 4, 15, 4, 10, 2, 4, 4, 12, 6, 6, 12, 4, 4, 3, 11, 4, 16, 8, 16, 4, 11, 3, 4, 6, 8, 6, 8, 8, 6, 8, 6, 4, 2, 10, 10, 22, 4, 30, 4, 22, 10, 10, 2, 6, 4, 8, 9, 8, 8, 8, 8, 9, 8, 4, 6
Offset: 1

Views

Author

Peter Luschny, Sep 12 2012

Keywords

Comments

T(n,k) = number of subgroups of C_n X C_k. [Hampjes et al.] - N. J. A. Sloane, Feb 02 2013

Examples

			[----1---2---3---4---5---6---7---8---9--10--11--12]
[ 1] 1,  2,  2,  3,  2,  4,  2,  4,  3,  4,  2,  6
[ 2] 2,  5,  4,  8,  4, 10,  4, 11,  6, 10,  4, 16
[ 3] 2,  4,  6,  6,  4, 12,  4,  8, 10,  8,  4, 18
[ 4] 3,  8,  6, 15,  6, 16,  6, 22,  9, 16,  6, 30
[ 5] 2,  4,  4,  6,  8,  8,  4,  8,  6, 16,  4, 12
[ 6] 4, 10, 12, 16,  8, 30,  8, 22, 20, 20,  8, 48
[ 7] 2,  4,  4,  6,  4,  8, 10,  8,  6,  8,  4, 12
[ 8] 4, 11,  8, 22,  8, 22,  8, 37, 12, 22,  8, 44
[ 9] 3,  6, 10,  9,  6, 20,  6, 12, 23, 12,  6, 30
[10] 4, 10,  8, 16, 16, 20,  8, 22, 12, 40,  8, 32
[11] 2,  4,  4,  6,  4,  8,  4,  8,  6,  8, 14, 12
[12] 6, 16, 18, 30, 12, 48, 12, 44, 30, 32, 12, 90
.
Displayed as a triangular array:
1,
2,  2,
2,  5,  2,
3,  4,  4,  3,
2,  8,  6,  8, 2,
4,  4,  6,  6, 4,  4,
2, 10,  4, 15, 4, 10, 2,
4,  4, 12,  6, 6, 12, 4,  4,
3, 11,  4, 16, 8, 16, 4, 11, 3,
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    T:= (n, k)-> add(add(igcd(c,d), c=divisors(n)), d=divisors(k)):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..14); # Alois P. Heinz, Sep 12 2012
    T:=proc(m,n) local d; add( d*tau(m*n/d^2), d in divisors(gcd(m,n))); end; # N. J. A. Sloane, Feb 02 2013
  • Mathematica
    t[n_, k_] := Sum[Sum[GCD[c, d], {c, Divisors[n]}], {d, Divisors[k]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 21 2013 *)
  • Sage
    def A216624(n, k) :
        cp = cartesian_product([divisors(n), divisors(k)])
        return reduce(lambda x,y: x+y, map(gcd, cp))
    for n in (1..12): [A216624(n,k) for k in (1..12)]

Formula

T(n,n) = A060724(n) = sum_{d|n} d*tau((n/d)^2).
T(n,1) = T(1,n) = A000005(n) = tau(n).
T(n,2) = T(2,n) = A060710(n) = sum_{d|n} (3-[d is odd]) (Iverson bracket).
T(n+1,n) = A092517(n) = tau(n+1)*tau(n).
T(prime(n),1) = A007395(n) = 2.
T(prime(n),prime(n)) = A113935(n) = prime(n)+3.

A083542 a(n) = phi(n+1)*phi(n), product of totients of two consecutive integers.

Original entry on oeis.org

1, 2, 4, 8, 8, 12, 24, 24, 24, 40, 40, 48, 72, 48, 64, 128, 96, 108, 144, 96, 120, 220, 176, 160, 240, 216, 216, 336, 224, 240, 480, 320, 320, 384, 288, 432, 648, 432, 384, 640, 480, 504, 840, 480, 528, 1012, 736, 672, 840, 640, 768, 1248, 936, 720, 960, 864, 1008
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Haskell
    a083542 n = a000010 n * a000010 (n + 1)
    a083542_list = zipWith (*) (tail a000010_list) a000010_list
    -- Reinhard Zumkeller, Apr 22 2012
    
  • Maple
    a:= n-> (p-> p(n)*p(n+1))(numtheory[phi]):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jan 21 2022
  • Mathematica
    Times @@ EulerPhi@ # & /@ Partition[Range@ 58, 2, 1] (* Michael De Vlieger, Mar 25 2017 *)
    Times@@@Partition[EulerPhi[Range[60]],2,1] (* Harvey P. Dale, Oct 29 2019 *)
  • PARI
    a(n) = eulerphi(n) * eulerphi(n+1); \\ Amiram Eldar, Jul 10 2024

Formula

a(n) = A000010(A002378(n)). - Amiram Eldar, Jul 10 2024
Sum_{k=1..n} a(k) = c * n^3 / 3 + O((n*log(n))^2), where c = Product_{p prime} (1 - 2/p^2) = 0.322634... (A065474). - Amiram Eldar, Dec 09 2024
a(n) = A058515(n)*A066813(n). - Amiram Eldar, May 07 2025

A083539 a(n) = sigma(n) * sigma(n+1): product of sigma-values for consecutive integers.

Original entry on oeis.org

3, 12, 28, 42, 72, 96, 120, 195, 234, 216, 336, 392, 336, 576, 744, 558, 702, 780, 840, 1344, 1152, 864, 1440, 1860, 1302, 1680, 2240, 1680, 2160, 2304, 2016, 3024, 2592, 2592, 4368, 3458, 2280, 3360, 5040, 3780, 4032, 4224, 3696, 6552, 5616, 3456, 5952
Offset: 1

Views

Author

Labos Elemer, May 21 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := DivisorSigma[1, x]; t=Table[f[w+1]*f[w], {w, 1, 128}]
    Times@@@Partition[DivisorSigma[1,Range[50]],2,1] (* Harvey P. Dale, May 21 2014 *)
  • PARI
    a(n)=sigma(n)*sigma(n+1) \\ Charles R Greathouse IV, Feb 14 2013

Formula

a(n) = A000203(A002378(n)). - Amiram Eldar, Jul 10 2024

A216620 Square array read by antidiagonals: T(n,k) = Sum_{c|n,d|k} phi(gcd(c,d)) for n>=1, k>=1.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 3, 4, 4, 3, 2, 6, 5, 6, 2, 4, 4, 6, 6, 4, 4, 2, 8, 4, 10, 4, 8, 2, 4, 4, 10, 6, 6, 10, 4, 4, 3, 8, 4, 12, 7, 12, 4, 8, 3, 4, 6, 8, 6, 8, 8, 6, 8, 6, 4, 2, 8, 8, 14, 4, 20, 4, 14, 8, 8, 2, 6, 4, 8, 9, 8, 8, 8, 8, 9, 8, 4, 6, 2, 12, 4, 12, 6
Offset: 1

Views

Author

Peter Luschny, Sep 12 2012

Keywords

Comments

T(n,n) = A060648(n) = Sum_{d|n} Dedekind_Psi(d).
T(n,1) = T(1,n) = A000005(n) = tau(n).
T(n,2) = T(2,n) = A062011(n) = 2*tau(n).
T(n+1,n) = A092517(n) = tau(n+1)*tau(n).
T(prime(n),1) = A007395(n) = 2.
T(prime(n),prime(n)) = A052147(n) = prime(n)+2.

Examples

			[----1---2---3---4---5---6---7---8---9--10--11--12]
[ 1] 1,  2,  2,  3,  2,  4,  2,  4,  3,  4,  2,  6
[ 2] 2,  4,  4,  6,  4,  8,  4,  8,  6,  8,  4, 12
[ 3] 2,  4,  5,  6,  4, 10,  4,  8,  8,  8,  4, 15
[ 4] 3,  6,  6, 10,  6, 12,  6, 14,  9, 12,  6, 20
[ 5] 2,  4,  4,  6,  7,  8,  4,  8,  6, 14,  4, 12
[ 6] 4,  8, 10, 12,  8, 20,  8, 16, 16, 16,  8, 30
[ 7] 2,  4,  4,  6,  4,  8,  9,  8,  6,  8,  4, 12
[ 8] 4,  8,  8, 14,  8, 16,  8, 22, 12, 16,  8, 28
[ 9] 3,  6,  8,  9,  6, 16,  6, 12, 17, 12,  6, 24
[10] 4,  8,  8, 12, 14, 16,  8, 16, 12, 28,  8, 24
[11] 2,  4,  4,  6,  4,  8,  4,  8,  6,  8, 13, 12
[12] 6, 12, 15, 20, 12, 30, 12, 28, 24, 24, 12, 50
.
Displayed as a triangular array:
   1,
   2, 2,
   2, 4,  2,
   3, 4,  4,  3,
   2, 6,  5,  6, 2,
   4, 4,  6,  6, 4,  4,
   2, 8,  4, 10, 4,  8, 2,
   4, 4, 10,  6, 6, 10, 4, 4,
   3, 8,  4, 12, 7, 12, 4, 8, 3,
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    T:= (n, k)-> add(add(phi(igcd(c,d)), c=divisors(n)), d=divisors(k)):
    seq(seq(T(n, 1+d-n), n=1..d), d=1..14);  # Alois P. Heinz, Sep 12 2012
  • Mathematica
    t[n_, k_] := Outer[ EulerPhi[ GCD[#1, #2]]&, Divisors[n], Divisors[k]] // Flatten // Total; Table[ t[n-k+1, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 26 2013 *)
  • Sage
    def A216620(n, k) :
        cp = cartesian_product([divisors(n), divisors(k)])
        return reduce(lambda x,y: x+y, map(euler_phi, map(gcd, cp)))
    for n in (1..12): [A216620(n,k) for k in (1..12)]

A309507 Number of ways the n-th triangular number T(n) = A000217(n) can be written as the difference of two positive triangular numbers.

Original entry on oeis.org

0, 1, 1, 1, 3, 3, 1, 2, 5, 3, 3, 3, 3, 7, 3, 1, 5, 5, 3, 7, 7, 3, 3, 5, 5, 7, 7, 3, 7, 7, 1, 3, 7, 7, 11, 5, 3, 7, 7, 3, 7, 7, 3, 11, 11, 3, 3, 5, 8, 11, 7, 3, 7, 15, 7, 7, 7, 3, 7, 7, 3, 11, 5, 3, 15, 7, 3, 7, 15, 7, 5, 5, 3, 11, 11, 7, 15, 7, 3, 9, 9, 3, 7
Offset: 1

Views

Author

Alois P. Heinz, Aug 05 2019

Keywords

Comments

Equivalently, a(n) is the number of triples [n,k,m] with k>0 satisfying the Diophantine equation n*(n+1) + k*(k+1) - m*(m+1) = 0. Any such triple satisfies a triangle inequality, n+k > m. The n for which there is a triple [n,n,m] are listed in A053141. - Bradley Klee, Mar 01 2020; edited by N. J. A. Sloane, Mar 31 2020

Examples

			a(5) = 3: T(5) = T(6)-T(3) = T(8)-T(6) = T(15)-T(14).
a(7) = 1: T(7) = T(28)-T(27).
a(8) = 2: T(8) = T(13)-T(10) = T(36)-T(35).
a(9) = 5: T(9) = T(10)-T(4) = T(11)-T(6) = T(16)-T(13) = T(23)-T(21) = T(45)-T(44).
a(49) = 8: T(49) = T(52)-T(17) = T(61)-T(36) = T(94)-T(80) = T(127)-T(117) = T(178)-T(171) = T(247)-T(242) = T(613)-T(611) = T(1225)-T(1224).
The triples with n <= 16 are:
2, 2, 3
3, 5, 6
4, 9, 10
5, 3, 6
5, 6, 8
5, 14, 15
6, 5, 8
6, 9, 11
6, 20, 21
7, 27, 28
8, 10, 13
8, 35, 36
9, 4, 10
9, 6, 11
9, 13, 16
9, 21, 23
9, 44, 45
10, 8, 13
10, 26, 28
10, 54, 55
11, 14, 18
11, 20, 23
11, 65, 66
12, 17, 21
12, 24, 27
12, 77, 78
13, 9, 16
13, 44, 46
13, 90, 91
14, 5, 15
14, 11, 18
14, 14, 20
14, 18, 23
14, 33, 36
14, 51, 53
14, 104, 105
15, 21, 26
15, 38, 41
15, 119, 120
16, 135, 136. - _N. J. A. Sloane_, Mar 31 2020
		

Crossrefs

Cf. A000217, A001108, A046079 (the same for squares), A068194, A100821 (the same for primes for n>1), A309332.
See also A053141. The monotonic triples [n,k,m] with n <= k <= m are counted in A333529.

Programs

  • Maple
    with(numtheory): seq(tau(n*(n+1))-tau(n*(n+1)/2)-1, n=1..80); # Ridouane Oudra, Dec 08 2023
  • Mathematica
    TriTriples[TNn_] := Sort[Select[{TNn, (TNn + TNn^2 - # - #^2)/(2 #),
          (TNn + TNn^2 - # + #^2)/(2 #)} & /@
        Complement[Divisors[TNn (TNn + 1)], {TNn}],
       And[And @@ (IntegerQ /@ #), And @@ (# > 0 & /@ #)] &]]
    Length[TriTriples[#]] & /@ Range[100]
    (* Bradley Klee, Mar 01 2020 *)

Formula

a(n) = 1 <=> n in { A068194 } \ { 1 }.
a(n) is even <=> n in { A001108 } \ { 0 }.
a(n) = number of odd divisors of n*(n+1) (or, equally, of T(n)) that are greater than 1. - N. J. A. Sloane, Apr 03 2020
a(n) = A092517(n) - A063440(n) - 1. - Ridouane Oudra, Dec 08 2023

A063123 Number of solutions (r,s), 0< r< s, to the equation 1/n = 1/r + 1/s + 1/(r*s).

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 4, 6, 6, 4, 6, 6, 4, 8, 10, 5, 6, 6, 6, 12, 8, 4, 8, 12, 6, 8, 12, 6, 8, 8, 6, 12, 8, 8, 18, 9, 4, 8, 16, 8, 8, 8, 6, 18, 12, 4, 10, 15, 9, 12, 12, 6, 8, 16, 16, 16, 8, 4, 12, 12, 4, 12, 21, 14, 16, 8, 6, 12, 16, 8, 12, 12, 4, 12, 18, 12, 16, 8, 10, 25, 10, 4, 12, 24, 8, 8
Offset: 1

Views

Author

Vladeta Jovovic, Aug 08 2001

Keywords

Comments

Unordered solutions to the equation 1/n = 1/r+1/s+1/(r*s) are r=d+n, s=n*(n+1)/d+n, where d is factor of n*(n+1) not greater than n.
Number of divisors of n-th oblong number not greater than n. - Chandler

Examples

			a(2)=2 because 1/2=1/3+1/8+1/24=1/4+1/5+1/20.
		

Crossrefs

Cf. A063520.

Programs

  • Mathematica
    a[n_]:=DivisorSigma[0,n]DivisorSigma[0,(n+1)]/2; Array[a,86] (* Stefano Spezia, Aug 11 2025 *)
  • PARI
    a(n) = numdiv(n)*numdiv(n+1)/2 \\ Michel Marcus, Jun 17 2013

Formula

a(n) = tau(n)*tau(n+1)/2 = A092517(n)/2.

A133947 a(n) = the number of "non-isolated divisors" of n(n+1). A positive divisor, k, of n is non-isolated if (k-1) or (k+1) also divides n.

Original entry on oeis.org

2, 3, 4, 4, 5, 5, 4, 6, 7, 4, 6, 6, 4, 8, 8, 4, 5, 5, 6, 11, 7, 4, 6, 8, 4, 5, 8, 4, 7, 7, 4, 8, 5, 4, 15, 6, 4, 5, 10, 6, 7, 7, 4, 12, 9, 4, 6, 9, 4, 7, 8, 4, 5, 10, 10, 9, 5, 4, 8, 8, 4, 7, 10, 6, 9, 5, 4, 6, 10, 4, 8, 8, 4, 7, 10, 4, 11, 5, 6, 13, 5, 4, 8, 15, 4, 5, 8, 4, 9, 13, 6, 6, 5, 4, 12, 6, 4, 9
Offset: 1

Views

Author

Leroy Quet, Sep 30 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Divisors[n*(n + 1)],If[ # > 1, Mod[n*(n + 1), #*(# - 1)] == 0] || Mod[n*(n + 1), #*(# + 1)] == 0 &]], {n, 1, 80}] (* Stefan Steinerberger, Nov 01 2007 *)

Formula

a(n) = A092517(n) - A133948(n) = A132747(A002378(n)).

Extensions

More terms from Stefan Steinerberger, Nov 01 2007
Extended by Ray Chandler, Jun 23 2008

A133948 a(n) = the number of "isolated divisors" of n(n+1). A positive divisor, k, of n is isolated if neither (k-1) nor (k+1) divides n.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 6, 5, 4, 6, 6, 4, 8, 12, 6, 7, 7, 6, 13, 9, 4, 10, 16, 8, 11, 16, 8, 9, 9, 8, 16, 11, 12, 21, 12, 4, 11, 22, 10, 9, 9, 8, 24, 15, 4, 14, 21, 14, 17, 16, 8, 11, 22, 22, 23, 11, 4, 16, 16, 4, 17, 32, 22, 23, 11, 8, 18, 22, 12, 16, 16, 4, 17, 26, 20, 21, 11, 14, 37, 15, 4, 16
Offset: 1

Views

Author

Leroy Quet, Sep 30 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Length[Divisors[n*(n + 1)]] - Length[Select[Divisors[n*(n + 1)], If[ # > 1, Mod[n*(n + 1), #*(# - 1)] == 0] || Mod[n*(n + 1), #*(# + 1)] == 0 &]], {n, 1, 80}] (* Stefan Steinerberger, Nov 01 2007 *)

Formula

a(n) = A092517(n) - A133947(n) = A132881(A002378(n)).

Extensions

More terms from Stefan Steinerberger, Nov 01 2007
Extended by Ray Chandler, Jun 23 2008

A330320 a(n) = Sum_{i=1..n} tau(i)*tau(i+1), where tau(n) = A000005(n) is the number of divisors of n.

Original entry on oeis.org

2, 6, 12, 18, 26, 34, 42, 54, 66, 74, 86, 98, 106, 122, 142, 152, 164, 176, 188, 212, 228, 236, 252, 276, 288, 304, 328, 340, 356, 372, 384, 408, 424, 440, 476, 494, 502, 518, 550, 566, 582, 598, 610, 646, 670, 678, 698, 728, 746, 770, 794, 806, 822, 854, 886, 918, 934, 942, 966, 990, 998, 1022, 1064, 1092, 1124, 1140
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 2019

Keywords

Comments

For background references see A330570.

References

  • József Sándor, Dragoslav S. Mitrinovic, Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, page 61.

Crossrefs

Partial sums of A092517.

Programs

  • Mathematica
    Accumulate[a[n_]:=DivisorSum[n+1, DivisorSigma[0, n]&]; Array[a, 66]] (* Vincenzo Librandi, Jan 10 2020 *)
    Accumulate[Times@@@Partition[DivisorSigma[0,Range[70]],2,1]] (* Harvey P. Dale, Nov 02 2023 *)
  • PARI
    a(n) = sum(i=1, n, numdiv(i*(i+1))); \\ Michel Marcus, Jan 11 2020

Formula

a(n) ~ (1/zeta(2)) * n * log(n)^2. - Amiram Eldar, Mar 05 2020

A336013 Three-column table read by rows giving triples of integers with x > 0, y > 1 and z > 0 such that y^2 - y - x*z = 0, sorted by y then by x.

Original entry on oeis.org

1, 2, 2, 2, 2, 1, 1, 3, 6, 2, 3, 3, 3, 3, 2, 6, 3, 1, 1, 4, 12, 2, 4, 6, 3, 4, 4, 4, 4, 3, 6, 4, 2, 12, 4, 1, 1, 5, 20, 2, 5, 10, 4, 5, 5, 5, 5, 4, 10, 5, 2, 20, 5, 1, 1, 6, 30, 2, 6, 15, 3, 6, 10, 5, 6, 6, 6, 6, 5, 10, 6, 3, 15, 6, 2, 30, 6, 1
Offset: 1

Views

Author

David Lovler, Jul 07 2020

Keywords

Comments

When [x, y, z] is a row, f(a,b) = x*a*b + y*(a+b) + z is associative.
For each triple, the corresponding f(a,b) has an identity element (id), meaning f(a,id) = f(id,a) = a for all a. Id = -z/y. f(a,b) also has a zero element (call it theta), meaning f(a,theta) = f(theta,a) = theta for all a. Theta = -y/x.
I and θ are both integers only for rows with x = 1. - David Lovler, Feb 12 2022
f(a,b), defined by each row, also has a distributive rule when the generalized zero is taken into account. This means that if we define a "partition" of b by b = b1 + b2 - theta, then f(a,b) = f(a,b1 + b2 - theta) = f(a,b1) + f(a,b2) - theta for all a and b, and all "partitions" of b. Notice that when theta = 0, we have the usual distributive rule.
Another way to write f(a,b) for a row is to first compute id and theta from x, y and z. Then f(a,b) = (a*b - theta*(a+b) + id*theta)/(id - theta); or equivalently f(a,b) = (a*b - theta*(a+b) + theta^2)/(id - theta) + theta. Notice that id cannot equal theta because of id - theta in the denominator. Also notice that when id = 1 and theta = 0, f(a,b) = a*b, but multiplication is not represented in the table since the corresponding row would be [1, 0, 0], which is not allowed.
If (i) two rows are [x1, y1, z1] and [x2, y2, z2],
(ii) id_1 = -z1/y1, id_2 = -z2/y2, theta_1 = -y1/x1, theta_2 = -y2/x2, and
(iii) id_1/theta_2 + id_2/theta_1 = 2,
then [x1+x2, y1+y2, z1+z2] is a row. Consequently, if
(i) f1(a,b) = x1*a*b + y1*(a+b) + z1 is associative and
f2(a,b) = x2*a*b + y2*(a+b) + z2 is associative,
(ii) id_1 = -z1/y1, id_2 = -z2/y2, theta_1 = -y1/x1, theta_2 = -y2/x2, and
(iii) id_1/theta_2 + id_2/theta_1 = 2,
then f1(a,b) + f2(a,b) = (x1+x2)*a*b + (y1+y2)*(a+b) + z1+z2 is associative. Proof: Given [x1, y1, z1] and [x2, y2, z2] are rows and id_1/theta_2 + id_2/theta_1 = 2, the following algebraic manipulations show that [x1+x2, y1+y2, z1+z2] is a row.
(-z1/y1)/(-y2/x2) + (-z2/y2)/(-y1/x1) = 2
(x2*z1)/(y1*y2) + (x1*z2)/(y1*y2) = 2 [Multiply by y1*y2 and move to the right.]
0 = 2*y1*y2 - x1*z2 - x2*z1
[Add to the right side y1^2 - y1 - x1*z1 and y2^2 - y2 - x2*z2 which are both 0.]
0 = 2*y1*y2 - x1*z2 - x2*z1 + y1^2 - y1 - x1*z1 + y2^2 - y2 - x2*z2 [Rearrange.]
0 = (y1^2 + 2*y1*y2 + y2^2) - y1 - y2 - x1*z1 - x1*z2 - x2*z1 - x2*z2
0 = (y1+y2)^2 - (y1+y2) - (x1+x2)*(z1+z2). QED.
The idea of summing rows to get another row can be extended. If (i) three rows are [x1, y1, z1], [x2, y2, z2], and [x3, y3, z3], (ii) id and theta are defined as above, and (iii) (id_1/theta_2 + id_2/theta_1 - 2)/y3 + (id_1/theta_3 + id_3/theta_1 - 2)/y2 + (id_2/theta_3 + id_3/theta_2 - 2)/y1 = 0, then [x1+x2+x3, y1+y2+y3, z1+z2+z3] is a row.
Generalizing, when summing n rows to another row, the criterion involves the sum of binomial(n,2) versions of id_i/theta_j + id_j/theta_i - 2 as i and j go from 1 to n and i < j. Furthermore, each of these expressions is divided by the product of the y values from rows other than i and j. There are binomial(n,n-2) = binomial(n,2) such products. Formally this is:
If [x1,y1,z1] , ..., [xn,yn,zn] are rows and Sum_{1<=i
All of the above comments are still true when x, y, z, id and theta are complex numbers with y != 1 and x, y, z != 0.
If [x, y, z] is not a row, compute K = y/(y^2 - x*z). Then, K*[x, y, z] is a row if it is an integer triple. Note that if [x, y, z] were a row, K = 1. Furthermore, if [n*x, n*y, n*z] is not a row, compute K' = n*y/((n*y)^2 - (n*x)*(n*z)) = y/(n*(y^2 - x*z)) = K/n. Then K'*[n*x, n*y, n*z] = K*[x, y, z] as before. When K*[x, y, z] is not a triple for not having integer values, we still have (K*y)^2 - K*y - (K*x)*(K*z) = 0. - David Lovler, Jan 24 2022

Examples

			Table begins:
  [ x, y,  z]
-------------
  [ 1, 2,  2];
  [ 2, 2,  1];
  [ 1, 3,  6];
  [ 2, 3,  3];
  [ 3, 3,  2];
  [ 6, 3,  1];
  [ 1, 4, 12];
  [ 2, 4,  6];
  [ 3, 4,  4];
  [ 4, 4,  3];
  [ 6, 4,  2];
  [12, 4,  1];
  [ 1, 5, 20];
  [ 2, 5, 10];
  [ 4, 5,  5];
  [ 5, 5,  4];
  [10, 5,  2];
  [20, 5,  1];
  ...
Example of the distributive rule:
  [x, y, z] = [1, 2, 2]
  f(a,b) = a*b + 2*(a+b) + 2
  theta = -y/x = -2
  f(5,7) = 35 + 2*(5+7) + 2 = 61 which equals
  f(5,3 + 2 -(-2)) = f(5,3) + f(5,2) - (-2) = (15 + 16 + 2) + (10 + 14 + 2) + 2 = 61.
Examples of rows that sum to another row:
  [1, 7, 42] + [2, 8, 28] = [3, 15, 70] because
  id_1/theta_2 + id_2/theta_1 = (-42/7)/(-8/2) + (-28/8)/(-7/1) = 2.
  [42, 7, 1] + [28, 8, 2] = [70, 15, 3] because
  id_1/theta_2 + id_2/theta_1 = (-1/7)/(-8/28) + (-2/8)/(-7/42) = 2.
  [2, 8, 28] + [3, 18, 102] = [5, 26, 130] because
  id_1/theta_2 + id_2/theta_1 = (-28/8)/(-18/3) + (-102/18)/(-8/2) = 2.
  [28, 8, 2] + [102, 18, 3] = [130, 26, 5] because
  id_1/theta_2 + id_2/theta_1 = (-2/8)/(-18/102) + (-3/18)/(-8/28) = 2.
Examples of three rows that sum to a row:
  [1, 2, 2] + [1, 2, 2] + [1, 5, 20] = [3, 9, 24] because
  (id_1/theta_2 + id_2/theta_1 - 2)/y3 + (id_1/theta_3 + id_3/theta_1 - 2)/y2 + (id_2/theta_3 + id_3/theta_2 - 2)/y1 = ((-2/2)/(-2/1) + (-2/2)/(-2/1) - 2)/5 + ((-2/2)/(-5/1) + (-20/5)/(-2/1) - 2)/2 + ((-2/2)/(-5/1) + (-20/5)/(-2/1) - 2)/2 = 0. In this example no two of the rows sum to another row.
  [1, 7, 42] + [2, 8, 28] + [3, 10, 30] = [6, 25, 100] because
  (id_1/theta_2 + id_2/theta_1 - 2)/y3 + (id_1/theta_3 + id_3/theta_1 - 2)/y2 + (id_2/theta_3 + id_3/theta_2 - 2)/y1 = ((-42/7)/(-8/2) + (-28/8)/(-7/1) - 2)/10 + ((-42/7)/(-10/3) + (-30/10)/(-7/1) - 2)/8 + ((-28/8)/(-10/3) + (-30/10)/(-8/2) - 2)/7 = 0. In this example [1, 7, 42] and [2, 8, 28] sum to [3, 15, 70], another row.
For n=4,
  if (id_1/theta_2 + id_2/theta_1 - 2)/(y3*y4) + (id_1/theta_3 + id_3/theta_1 - 2)/(y2*y4) + (id_1/theta_4 + id_4/theta_1 - 2)/(y2*y3) + (id_2/theta_3 + id_3/theta_2 - 2)/(y1*y4) + (id_2/theta_4 + id_4/theta_2 - 2)/(y1*y3) + (id_3/theta_4 + id_4/theta_3 - 2)/(y1*y2) = 0,
  then [x1+x2+x3+x4 , y1+y2+y3+y4 , z1+z2+z3+z4] is a row.
[x, y, z] = [3, 2, 1] is not a row, but (y/(y^2 - x*z))*[x, y, z] = (2/(2^2 - 3*1))*[3, 2, 1] = [6, 4, 2] which is a row. - _David Lovler_, Jan 22 2022
		

Crossrefs

The number of rows for each y beginning with y=2 is A092517.
Cf. A332083.

Programs

  • PARI
    for (y = 2, 8, fordiv (y^2-y, x, print([x, y, (y^2-y)/x]) ) ) \\ David Lovler, Mar 12 2021

Formula

x = (y^2 - y)/z.
y = (1 + sqrt(1 + 4*x*z))/2.
z = (y^2 - y)/x.

Extensions

Table format in example edited by David Lovler, Feb 14 2022
Showing 1-10 of 15 results. Next