cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058215 Largest solution of phi(x) = 2^n.

Original entry on oeis.org

2, 6, 12, 30, 60, 120, 240, 510, 1020, 2040, 4080, 8160, 16320, 32640, 65280, 131070, 262140, 524280, 1048560, 2097120, 4194240, 8388480, 16776960, 33553920, 67107840, 134215680, 268431360, 536862720, 1073725440, 2147450880, 4294901760, 8589934590
Offset: 0

Views

Author

Labos Elemer, Nov 30 2000

Keywords

Comments

The ratio of adjacent terms is 2 except for five terms (if there are exactly five Fermat primes). - T. D. Noe, Jun 21 2012

Examples

			For n = 6, 2^n = 64; the solutions of phi(x) = 64 are {85,128,136,160,170,192,204,240}; the largest is a(6) = 240.
		

Crossrefs

Programs

  • Mathematica
    phiinv[ n_, pl_ ] := Module[ {i, p, e, pe, val}, If[ pl=={}, Return[ If[ n==1, {1}, {} ] ] ]; val={}; p=Last[ pl ]; For[ e=0; pe=1, e==0||Mod[ n, (p-1)pe/p ]==0, e++; pe*=p, val=Join[ val, pe*phiinv[ If[ e==0, n, n*p/pe/(p-1) ], Drop[ pl, -1 ] ] ] ]; Sort[ val ] ]; phiinv[ n_ ] := phiinv[ n, Select[ 1+Divisors[ n ], PrimeQ ] ]; Table[ phiinv[ 2^n ][ [ -1 ] ], {n, 0, 30} ] (* phiinv[ n, pl ] = list of x with phi(x)=n and all prime divisors of x in list pl. phiinv[ n ] = list of x with phi(x)=n *)
  • PARI
    a(n) = invphiMax(2^n); \\ Amiram Eldar, Nov 11 2024, using Max Alekseyev's invphi.gp

Formula

Assuming there are only 5 Fermat primes (A019434), a(n) = 2^(n-30)*(2^32-1) for n >= 31.

Extensions

Edited by Dean Hickerson, Jan 25 2002