A053576
Smallest number whose Euler totient is divisible by 2^n.
Original entry on oeis.org
1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295, 8589934592, 17179869184, 34359738368, 68719476736, 137438953472, 274877906944, 549755813888, 1099511627776
Offset: 0
1,2,4,8,...,131072 divide phi of 2,3,5,15,...,196611 = 3*65537 respectively.
-
With[{s = Array[EulerPhi, 10^6]}, Table[FirstPosition[s, ?(Divisible[#, 2^n] &)][[1]], {n, 0, 19}]] (* _Michael De Vlieger, Sep 05 2017 *)
-
a(n)={
if(n >= 8589934592 && valuation(n>>5,2)>27,
warning("Result is conjectural on the nonexistence of Fermat primes >= F(33).")
);
if(n>31,
return(2<Charles R Greathouse IV, Jul 15 2013
A058213
Triangular arrangement of solutions of phi(x) = 2^n (n >= 0), where phi=A000010 is Euler's totient function. Each row corresponds to a particular n and its length is n+2 for 0 <= n <= 31, 32 for n >= 32. (This assumes that there are only 5 Fermat primes.)
Original entry on oeis.org
1, 2, 3, 4, 6, 5, 8, 10, 12, 15, 16, 20, 24, 30, 17, 32, 34, 40, 48, 60, 51, 64, 68, 80, 96, 102, 120, 85, 128, 136, 160, 170, 192, 204, 240, 255, 256, 272, 320, 340, 384, 408, 480, 510, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 771, 1024, 1028, 1088
Offset: 0
Triangle begins:
{ 1, 2},
{ 3, 4, 6},
{ 5, 8, 10, 12},
{15, 16, 20, 24, 30},
{17, 32, 34, 40, 48, 60},
{51, 64, 68, 80, 96, 102, 120},
{85, 128, 136, 160, 170, 192, 204, 240},
...
Cf.
A000010,
A001317,
A003401,
A004729,
A019434,
A045544,
A047999,
A053576,
A054432,
A058214,
A058215.
-
phiinv[ n_, pl_ ] := Module[ {i, p, e, pe, val}, If[ pl=={}, Return[ If[ n==1, {1}, {} ] ] ]; val={}; p=Last[ pl ]; For[ e=0; pe=1, e==0||Mod[ n, (p-1)pe/p ]==0, e++; pe*=p, val=Join[ val, pe*phiinv[ If[ e==0, n, n*p/pe/(p-1) ], Drop[ pl, -1 ] ] ] ]; Sort[ val ] ]; phiinv[ n_ ] := phiinv[ n, Select[ 1+Divisors[ n ], PrimeQ ] ]; Join@@(phiinv[ 2^# ]&/@Range[ 0, 10 ]) (* phiinv[ n, pl ] = list of x with phi(x)=n and all prime divisors of x in list pl. phiinv[ n ] = list of x with phi(x)=n *)
A058214
Sum of solutions of phi(x) = 2^n.
Original entry on oeis.org
3, 13, 35, 105, 231, 581, 1315, 3225, 6711, 15221, 32755, 74505, 154407, 339397, 718115, 1589145, 3243831, 6946421, 14482675, 31259145, 63894567, 135588037, 281203235, 601400985, 1219907127, 2557715317, 5267017715, 11123540745, 22600784679, 47205887429
Offset: 0
For n = 6, 2^n = 64; the solutions of phi(x) = 64 are {85,128,136,160,170,192,204,240}, whose sum is a(6) = 1315.
Cf.
A000010,
A001317,
A003401,
A004729,
A019434,
A045544,
A047999,
A053576,
A054432,
A058213,
A058215.
-
phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl=={}, Return[If[n==1, {1}, {}]]]; val={}; p=Last[pl]; For[e=0; pe=1, e==0||Mod[n, (p-1)pe/p]==0, e++; pe*=p, val=Join[val, pe*phiinv[If[e==0, n, n*p/pe/(p-1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1+Divisors[n], PrimeQ]]; Table[Plus@@phiinv[2^n], {n, 0, 30}] (* phiinv[n, pl] = list of x with phi(x)=n and all prime divisors of x in list pl. phiinv[n] = list of x with phi(x)=n *)
-
a(n) = vecsum(invphi(2^n)); \\ Amiram Eldar, Nov 11 2024, using Max Alekseyev's invphi.gp
Showing 1-3 of 3 results.
Comments