cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A001317 Sierpiński's triangle (Pascal's triangle mod 2) converted to decimal.

Original entry on oeis.org

1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295, 4294967297, 12884901891, 21474836485, 64424509455, 73014444049, 219043332147, 365072220245, 1095216660735, 1103806595329, 3311419785987
Offset: 0

Views

Author

Keywords

Comments

The members are all palindromic in binary, i.e., a subset of A006995. - Ralf Stephan, Sep 28 2004
J. H. Conway writes (in Math Forum): at least the first 31 numbers give odd-sided constructible polygons. See also A047999. - M. Dauchez (mdzzdm(AT)yahoo.fr), Sep 19 2005 [This observation was also made in 1982 by N. L. White (see letter). - N. J. A. Sloane, Jun 15 2015]
Decimal number generated by the binary bits of the n-th generation of the Rule 60 elementary cellular automaton. Thus: 1; 0, 1, 1; 0, 0, 1, 0, 1; 0, 0, 0, 1, 1, 1, 1; 0, 0, 0, 0, 1, 0, 0, 0, 1; ... . - Eric W. Weisstein, Apr 08 2006
Limit_{n->oo} log(a(n))/n = log(2). - Bret Mulvey, May 17 2008
Equals row sums of triangle A166548; e.g., 17 = (2 + 4 + 6 + 4 + 1). - Gary W. Adamson, Oct 16 2009
Equals row sums of triangle A166555. - Gary W. Adamson, Oct 17 2009
For n >= 1, all terms are in A001969. - Vladimir Shevelev, Oct 25 2010
Let n,m >= 0 be such that no carries occur when adding them. Then a(n+m) = a(n)*a(m). - Vladimir Shevelev, Nov 28 2010
Let phi_a(n) be the number of a(k) <= a(n) and respectively prime to a(n) (i.e., totient function over {a(n)}). Then, for n >= 1, phi_a(n) = 2^v(n), where v(n) is the number of 0's in the binary representation of n. - Vladimir Shevelev, Nov 29 2010
Trisection of this sequence gives rows of A008287 mod 2 converted to decimal. See also A177897, A177960. - Vladimir Shevelev, Jan 02 2011
Converting the rows of the powers of the k-nomial (k = 2^e where e >= 1) term-wise to binary and reading the concatenation as binary number gives every (k-1)st term of this sequence. Similarly with powers p^k of any prime. It might be interesting to study how this fails for powers of composites. - Joerg Arndt, Jan 07 2011
This sequence appears in Pascal's triangle mod 2 in another way, too. If we write it as
1111111...
10101010...
11001100...
10001000...
we get (taking the period part in each row):
.(1) (base 2) = 1
.(10) = 2/3
.(1100) = 12/15 = 4/5
.(1000) = 8/15
The k-th row, treated as a binary fraction, seems to be equal to 2^k / a(k). - Katarzyna Matylla, Mar 12 2011
From Daniel Forgues, Jun 16-18 2011: (Start)
Since there are 5 known Fermat primes, there are 32 products of distinct Fermat primes (thus there are 31 constructible odd-sided polygons, since a polygon has at least 3 sides). a(0)=1 (empty product) and a(1) to a(31) are those 31 non-products of distinct Fermat primes.
It can be proved by induction that all terms of this sequence are products of distinct Fermat numbers (A000215):
a(0)=1 (empty product) are products of distinct Fermat numbers in { };
a(2^n+k) = a(k) * (2^(2^n)+1) = a(k) * F_n, n >= 0, 0 <= k <= 2^n - 1.
Thus for n >= 1, 0 <= k <= 2^n - 1, and
a(k) = Product_{i=0..n-1} F_i^(alpha_i), alpha_i in {0, 1},
this implies
a(2^n+k) = Product_{i=0..n-1} F_i^(alpha_i) * F_n, alpha_i in {0, 1}.
(Cf. OEIS Wiki links below.) (End)
The bits in the binary expansion of a(n) give the coefficients of the n-th power of polynomial (X+1) in ring GF(2)[X]. E.g., 3 ("11" in binary) stands for (X+1)^1, 5 ("101" in binary) stands for (X+1)^2 = (X^2 + 1), and so on. - Antti Karttunen, Feb 10 2016

Examples

			Given a(5)=51, a(6)=85 since a(5) XOR 2*a(5) = 51 XOR 102 = 85.
From _Daniel Forgues_, Jun 18 2011: (Start)
  a(0) = 1 (empty product);
  a(1) = 3 = 1 * F_0 = a(2^0+0) = a(0) * F_0;
  a(2) = 5 = 1 * F_1 = a(2^1+0) = a(0) * F_1;
  a(3) = 15 = 3 * 5 = F_0 * F_1 = a(2^1+1) = a(1) * F_1;
  a(4) = 17 = 1 * F_2 = a(2^2+0) = a(0) * F_2;
  a(5) = 51 = 3 * 17 = F_0 * F_2 = a(2^2+1) = a(1) * F_2;
  a(6) = 85 = 5 * 17 = F_1 * F_2 = a(2^2+2) = a(2) * F_2;
  a(7) = 255 = 3 * 5 * 17 = F_0 * F_1 * F_2 = a(2^2+3) = a(3) * F_2;
  ... (End)
		

References

  • Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 113.
  • Henry Wadsworth Gould, Exponential Binomial Coefficient Series, Tech. Rep. 4, Math. Dept., West Virginia Univ., Morgantown, WV, Sept. 1961.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 136-137.

Crossrefs

Cf. A038183 (odd bisection, 1D Cellular Automata Rule 90).
Iterates of A048724 (starting from 1).
Row 3 of A048723.
Positions of records in A268389.
Positions of ones in A268669 and A268384 (characteristic function).
Not the same as A045544 nor as A053576.
Cf. A045544.

Programs

  • Haskell
    a001317 = foldr (\u v-> 2*v + u) 0 . map toInteger . a047999_row
    -- Reinhard Zumkeller, Nov 24 2012
    (Scheme, with memoization-macro definec, two variants)
    (definec (A001317 n) (if (zero? n) 1 (A048724 (A001317 (- n 1)))))
    (definec (A001317 n) (if (zero? n) 1 (A048720bi 3 (A001317 (- n 1))))) ;; Where A048720bi implements the dyadic function given in A048720.
    ;; Antti Karttunen, Feb 10 2016
    
  • Magma
    [&+[(Binomial(n, i) mod 2)*2^i: i in [0..n]]: n in [0..41]]; // Vincenzo Librandi, Feb 12 2016
    
  • Maple
    A001317 := proc(n) local k; add((binomial(n,k) mod 2)*2^k, k=0..n); end;
  • Mathematica
    a[n_] := Nest[ BitXor[#, BitShiftLeft[#, 1]] &, 1, n]; Array[a, 42, 0] (* Joel Madigan (dochoncho(AT)gmail.com), Dec 03 2007 *)
    NestList[BitXor[#,2#]&,1,50] (* Harvey P. Dale, Aug 02 2021 *)
  • PARI
    a(n)=sum(i=0,n,(binomial(n,i)%2)*2^i)
    
  • PARI
    a=1; for(n=0, 66, print1(a,", "); a=bitxor(a,a<<1) ); \\ Joerg Arndt, Mar 27 2013
    
  • PARI
    A001317(n,a=1)={for(k=1,n,a=bitxor(a,a<<1));a} \\ M. F. Hasler, Jun 06 2016
    
  • PARI
    a(n) = subst(lift(Mod(1+'x,2)^n), 'x, 2); \\ Gheorghe Coserea, Nov 09 2017
    
  • Python
    from sympy import binomial
    def a(n): return sum([(binomial(n, i)%2)*2**i for i in range(n + 1)]) # Indranil Ghosh, Apr 11 2017
    
  • Python
    def A001317(n): return int(''.join(str(int(not(~n&k))) for k in range(n+1)),2) # Chai Wah Wu, Feb 04 2022

Formula

a(n+1) = a(n) XOR 2*a(n), where XOR is binary exclusive OR operator. - Paul D. Hanna, Apr 27 2003
a(n) = Product_{e(j, n) = 1} (2^(2^j) + 1), where e(j, n) is the j-th least significant digit in the binary representation of n (Roberts: see Allouche & Shallit). - Benoit Cloitre, Jun 08 2004
a(2*n+1) = 3*a(2*n). Proof: Since a(n) = Product_{k in K} (1 + 2^(2^k)), where K is the set of integers such that n = Sum_{k in K} 2^k, clearly K(2*n+1) = K(2*n) union {0}, hence a(2*n+1) = (1+2^(2^0))*a(2*n) = 3*a(2*n). - Emmanuel Ferrand and Ralf Stephan, Sep 28 2004
a(32*n) = 3 ^ (32 * n * log(2) / log(3)) + 1. - Bret Mulvey, May 17 2008
For n >= 1, A000120(a(n)) = 2^A000120(n). - Vladimir Shevelev, Oct 25 2010
a(2^n) = A000215(n); a(2^n-1) = a(2^n)-2; for n >= 1, m >= 0,
a(2^(n-1)-1)*a(2^n*m + 2^(n-1)) = 3*a(2^(n-1))*a(2^n*m + 2^(n-1)-2). - Vladimir Shevelev, Nov 28 2010
Sum_{k>=0} 1/a(k) = Product_{n>=0} (1 + 1/F_n), where F_n=A000215(n);
Sum_{k>=0} (-1)^(m(k))/a(k) = 1/2, where {m(n)} is Thue-Morse sequence (A010060).
If F_n is defined by F_n(z) = z^(2^n) + 1 and a(n) by (1/2)*Sum_{i>=0}(1-(-1)^{binomial(n,i)})*z^i, then, for z > 1, the latter two identities hold as well with the replacement 1/2 in the right hand side of the 2nd one by 1-1/z. - Vladimir Shevelev, Nov 29 2010
G.f.: Product_{k>=0} ( 1 + z^(2^k) + (2*z)^(2^k) ). - conjectured by Shamil Shakirov, proved by Vladimir Shevelev
a(n) = A000225(n+1) - A219843(n). - Reinhard Zumkeller, Nov 30 2012
From Antti Karttunen, Feb 10 2016: (Start)
a(0) = 1, and for n > 1, a(n) = A048720(3, a(n-1)) = A048724(a(n-1)).
a(n) = A048723(3,n).
a(n) = A193231(A000079(n)).
For all n >= 0: A268389(a(n)) = n.
(End)

A045544 Odd values of n for which a regular n-gon can be constructed by compass and straightedge.

Original entry on oeis.org

3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295
Offset: 1

Views

Author

Keywords

Comments

If there are no more Fermat primes, then 4294967295 is the last term in the sequence.
From Daniel Forgues, Jun 17 2011: (Start)
The 31 = 2^5 - 1 terms of this sequence are the nonempty products of distinct Fermat primes. The 5 known Fermat primes are in A019434.
Prepending the empty product, i.e., 1, to this sequence gives A004729.
The initial term for this sequence is thus a(1) (offset=1), since a(0) should correspond to the omitted empty product, term a(0) of A004729.
Rows 1 to 31 of Sierpiński's triangle, if interpreted as a binary number converted to decimal (A001317), give a(1) to a(31). (End)

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 73 at pp. 181-182.

Crossrefs

Cf. A019434. Essentially same as A004729.
Coincides with A001317 for the first 31 terms only. - Robert G. Wilson v, Dec 22 2001
Cf. A053576.

Programs

  • Mathematica
    Union[Times@@@Rest[Subsets[{3,5,17,257,65537}]]] (* Harvey P. Dale, Sep 20 2011 *)

Formula

Each term is the product of distinct odd Fermat primes.
Sum_{n>=1} 1/a(n) = -1 + Product_{n>=1} (1+1/A019434(n)) = 0.7007354948... >= 1003212011/1431655765 = sigma(2^32-1)/(2^32-1) - 1, with equality if there are only five Fermat primes (A019434). - Amiram Eldar, Jan 22 2022

A078164 Numbers k such that phi(k) is a perfect biquadrate.

Original entry on oeis.org

1, 2, 17, 32, 34, 40, 48, 60, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 1297, 1387, 1417, 1729, 1971, 2109, 2223, 2289, 2331, 2445, 2457, 2565, 2594, 2608, 2774, 2812, 2834, 2835, 3052, 3260, 3458, 3888, 3912, 3924, 3942, 3996, 4104, 4212, 4218
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

Corresponding values of phi include 1, 16, 256, 1296, 4096, ... and these arise several times each.
a(3) = A053576(4).
A013776 is a subsequence since phi(2^(4*n+1)) = (2^n)^4. - Bernard Schott, Sep 22 2022
Subsequence of primes is A037896 since in this case: phi(k^4+1) = k^4. - Bernard Schott, Mar 05 2023

Crossrefs

Subsequence of A039770. A037896 is a subsequence.
Sequences where phi(k) is a perfect power: A039770 (square), A039771 (cube), this sequence (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th).

Programs

  • Mathematica
    k=4; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Select[Range[5000],IntegerQ[Surd[EulerPhi[#],4]]&] (* Harvey P. Dale, Apr 30 2015 *)
  • PARI
    is(n)=ispower(eulerphi(n),4) \\ Charles R Greathouse IV, Apr 24 2020
    
  • Python
    from itertools import count, islice
    from sympy import totient, integer_nthroot
    def A078164_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:integer_nthroot(totient(n),4)[1], count(max(1,startvalue)))
    A078164_list = list(islice(A078164_gen(),20)) # Chai Wah Wu, Feb 28 2023

A004729 Divisors of 2^32 - 1 (for a(1) to a(31), the 31 regular polygons with an odd number of sides constructible with ruler and compass).

Original entry on oeis.org

1, 3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295
Offset: 0

Views

Author

Keywords

Comments

The 32 divisors of the product of the 5 known Fermat primes.
The only known odd numbers whose totient is a power of 2. - Labos Elemer, Dec 06 2000
Equals first 32 members of A001317. Also, equals first 32 members of A053576. - Omar E. Pol, Dec 10 2008
Omitting the first term a(0)=1 gives A045544 (the number of sides of constructible odd-sided regular polygons.)

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, New York, 1996; see p. 140.

Crossrefs

Programs

  • Mathematica
    Divisors[2^32-1]
  • PARI
    divisors(1<<32-1)

Extensions

Edited by Daniel Forgues, Jun 17 2011

A082505 a(n) = sum of (n-1)-th row terms of triangle A134059.

Original entry on oeis.org

0, 1, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472
Offset: 0

Views

Author

Labos Elemer, Apr 28 2003

Keywords

Comments

a(n) is the least number x such that gcd(2^x, x-phi(x)) = 2^n. If cototient is replaced by totient, analogous values are different: A053576.

Examples

			G.f. = x + 6*x^2 + 12*x^3 + 24*x^4 + 48*x^5 + 96*x^6 + 192*x^7 + 384*x^8 + ...
		

Crossrefs

Essentially the same as A003945 (and perhaps also A058764).

Programs

  • Magma
    [0, 1] cat [ &+[ 3*Binomial(n,k): k in [0..n] ]: n in [1..30] ]; // Klaus Brockhaus, Dec 02 2009
    
  • Maple
    0,1,seq(3*2^(n-1), n=2..40); # G. C. Greubel, Apr 27 2021
  • Mathematica
    {0}~Join~Map[Total, {{1}}~Join~Table[3 Binomial[n, k], {n, 30}, {k, 0, n}]] (* Michael De Vlieger, Jul 03 2016, after Harvey P. Dale at A134059 *)
    Table[3*2^(n-1) -(3/2)*Boole[n==0] -2*Boole[n==1], {n,0,40}] (* G. C. Greubel, Apr 27 2021 *)
    Join[{0,1},NestList[2#&,6,30]] (* Harvey P. Dale, Jan 22 2024 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (-6*k + 16) * A[k-1] + 2 * sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 23 2011 */
    
  • PARI
    a(n)=if(n<2,n,3<<(n-1)) \\ Charles R Greathouse IV, Jun 16 2012
    
  • Sage
    [0,1]+[3*2^(n-1) for n in (2..40)] # G. C. Greubel, Apr 27 2021

Formula

a(n) = A007283(n-1) for n>1, with a(0) = 0 and a(1) = 1.
G.f.: x * (1 + 4*x) / (1 - 2*x) = x / (1 - 6*x / (1 + 4*x)). - Michael Somos, Jun 15 2012
Starting (1, 6, 12, 24, 48, ...) = binomial transform of [1, 5, 1, 5, 1, 5, ...]. - Gary W. Adamson, Nov 18 2007
a(n+1) = Sum_{k=0..n} A109466(n,k)*A144706(k). - Philippe Deléham, Oct 30 2008
a(n) = (-6*n + 16) * a(n-1) + 2 * Sum_{k=1..n-1} a(k) * a(n-k) if n>1. - Michael Somos, Jul 23 2011
E.g.f.: (-3 - 4*x + 3*exp(2*x))/2. - Ilya Gutkovskiy, Jul 04 2016
a(n) = 3*2^(n-1) - (3/2)*[n=0] - 2*[n=1]. - G. C. Greubel, Apr 27 2021

Extensions

More terms from Klaus Brockhaus, Dec 02 2009

A050922 Triangle in which n-th row gives prime factors of n-th Fermat number 2^(2^n)+1.

Original entry on oeis.org

3, 5, 17, 257, 65537, 641, 6700417, 274177, 67280421310721, 59649589127497217, 5704689200685129054721, 1238926361552897, 93461639715357977769163558199606896584051237541638188580280321
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 1999

Keywords

Comments

Alternatively, list of prime factors of terms of A001317 in order of their first appearance. - Labos Elemer, Jan 21 2002
From T. D. Noe, Jan 29 2009: (Start)
That these two definitions give the same sequence follows from the fact (stated as a formula in A001317) that A001317(n) is the product of Fermat numbers F(i) according to which bits of n are set.
For instance, for n=41, the binary representation of n is 101001, which has bits 0, 3 and 5 set. A001317(n) = 3311419785987 = 3*257*4294967297 = F(0)*F(3)*F(5).
This factorization also explains why the "first 31 numbers give odd-sided constructible polygons". I think Hewgill first noticed this factorization. (End)

Examples

			Triangle begins:
  3;
  5;
  17;
  257;
  65537;
  641,               6700417;
  274177,            67280421310721;
  59649589127497217, 5704689200685129054721;
  1238926361552897,  93461639715357977769163558199606896584051237541638188580280321;
  ...
A001317(127) = 3*5*17*257*65537.641*6700417*274177*6728042130721, A001317(128) = 59649589127497217*5704689200685129054721. See also A050922. Compare with A053576, where 2 and A000215 appear as prime factors. - _Labos Elemer_, Jan 21 2002
		

References

  • M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 2nd. ed., 2001; see p. 3.

Crossrefs

Programs

  • Mathematica
    Flatten[Transpose[FactorInteger[#]][[1]]&/@Table[2^(2^n)+1,{n,0,8}]] (* Harvey P. Dale, May 18 2012 *)
  • PARI
    for(n=0, 1e3, f=factor(2^(2^n)+1)[, 1]; for(i=1, #f, print1(f[i], ", "))) \\ Felix Fröhlich, Aug 16 2014

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 13 2000.
Edited by N. J. A. Sloane, Jan 31 2009 at the suggestion of T. D. Noe
Link to Munafo webpage fixed by Robert Munafo, Dec 09 2009

A339880 Odd composite numbers k such that A053575(k) [the odd part of phi] divides k-1.

Original entry on oeis.org

15, 51, 85, 91, 255, 435, 451, 561, 595, 771, 1105, 1261, 1285, 1351, 1695, 2091, 2431, 2465, 3655, 3855, 4369, 4795, 5083, 5151, 5383, 6601, 6643, 6735, 7051, 8245, 8481, 8695, 8911, 8995, 9061, 9605, 10585, 11155, 13107, 15051, 15211, 16405, 16705, 17733, 18721, 19669, 20451, 21845, 22359, 23001, 26335, 28645
Offset: 1

Views

Author

Antti Karttunen, Dec 24 2020

Keywords

Comments

No common terms with A016105. See A339870 for the reason. - Antti Karttunen, Dec 26 2020

Crossrefs

Subsequence of A005117 and of A339879, and of A340077.
Cf. A339869, A339870 (subsequences).
Cf. also A002997, A053576, A339817.

Programs

  • PARI
    A000265(n) = (n>>valuation(n, 2));
    isA339880(n) = (bitand(n,1)&&(n>1)&&!isprime(n)&&!((n-1)%A000265(eulerphi(n))));

A078165 Numbers k such that phi(k) is a perfect 5th power.

Original entry on oeis.org

1, 2, 51, 64, 68, 80, 96, 102, 120, 1285, 2048, 2056, 2176, 2560, 2570, 2720, 3072, 3084, 3264, 3840, 4080, 7957, 8227, 8279, 9079, 9139, 9709, 9919, 10355, 10595, 11667, 11673, 11691, 12099, 12393, 12483, 12753, 12987, 13797, 14715, 14763
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

As phi(2^(5*n+1)) = (2^n)^5, A013822 is a subsequence. - Bernard Schott, Sep 26 2022
Numbers of the form u = 2^(5*k)*3^(5*m + 1), k>=1, m>=0, are terms because phi(u) = 2^(5*k)*3^(5*m) = (2^k*3^m)^5. - Marius A. Burtea, Sep 26 2022

Examples

			phi of the sequence includes 1, 32, 1024, 7776, ...; powers arise several times; a(3) = A053576(5) = 51.
		

Crossrefs

A013822 is a subsequence.
Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th, this sequence), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th power), A001317, A053576, A045544, A000010.

Programs

  • Mathematica
    k=5; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Select[Range[15000],IntegerQ[Surd[EulerPhi[#],5]]&] (* Harvey P. Dale, Jul 26 2019 *)
  • PARI
    is(n)=ispower(eulerphi(n),5) \\ Charles R Greathouse IV, Apr 24 2020

A078166 Numbers k such that phi(k) is a perfect sixth power.

Original entry on oeis.org

1, 2, 85, 128, 136, 160, 170, 192, 204, 240, 4369, 8192, 8224, 8704, 8738, 10240, 10280, 10880, 12288, 12336, 13056, 15360, 15420, 16320, 47197, 47239, 47989, 49267, 49589, 50557, 51319, 52429, 52649, 55699, 57589, 57953, 59495, 63973
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

As phi(2^(6*n+1)) = (2^n)^6, A277757 is a subsequence. - Bernard Schott, Sep 23 2022

Examples

			phi of the sequence includes 1, 64, 4096, 46656,..; powers arise several times; a(3)= A053576(6) = 85; in sequence relatively large jumps are observable when power of new numbers appear.
		

Crossrefs

A277757 is a subsequence.
Numbers k such that phi(k) is a perfect power: A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th, this sequence), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th power).

Programs

A078167 Numbers k such that phi(k) is a perfect 7th power.

Original entry on oeis.org

1, 2, 255, 256, 272, 320, 340, 384, 408, 480, 510, 21845, 32768, 32896, 34816, 34952, 40960, 41120, 43520, 43690, 49152, 49344, 52224, 52428, 61440, 61680, 65280, 280999, 281587, 282637, 282949, 283897, 294409, 297449, 300409, 302039, 304399
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Examples

			phi of the sequence includes 1, 128, 16384, 279936, etc..; powers arise several times; a(3) = A053576(7) = 255; in sequence rather large jumps arise when power of new numbers appear.
		

Crossrefs

Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th), A078167 (7th, this sequence), A078168 (8th), A078169 (9th), A078170 (10th power), A001317, A053576, A045544, A000010.

Programs

  • Mathematica
    k=7; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 1000000}]
  • PARI
    is(n)=ispower(eulerphi(n),7) \\ Charles R Greathouse IV, Apr 24 2020
Showing 1-10 of 22 results. Next