cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A003401 Numbers of edges of regular polygons constructible with ruler (or, more precisely, an unmarked straightedge) and compass.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96, 102, 120, 128, 136, 160, 170, 192, 204, 240, 255, 256, 257, 272, 320, 340, 384, 408, 480, 510, 512, 514, 544, 640, 680, 768, 771, 816, 960, 1020, 1024, 1028, 1088, 1280, 1285
Offset: 1

Views

Author

Keywords

Comments

The terms 1 and 2 correspond to degenerate polygons.
These are also the numbers for which phi(n) is a power of 2: A209229(A000010(a(n))) = 1. - Olivier Gérard Feb 15 1999
From Stanislav Sykora, May 02 2016: (Start)
The sequence can be also defined as follows: (i) 1 is a member. (ii) Double of any member is also a member. (iii) If a member is not divisible by a Fermat prime F_k then its product with F_k is also a member. In particular, the powers of 2 (A000079) are a subset and so are the Fermat primes (A019434), which are the only odd prime members.
The definition is too restrictive (though correct): The Georg Mohr - Lorenzo Mascheroni theorem shows that constructibility using a straightedge and a compass is equivalent to using compass only. Moreover, Jean Victor Poncelet has shown that it is also equivalent to using straightedge and a fixed ('rusty') compass. With the work of Jakob Steiner, this became part of the Poncelet-Steiner theorem establishing the equivalence to using straightedge and a fixed circle (with a known center). A further extension by Francesco Severi replaced the availability of a circle with that of a fixed arc, no matter how small (but still with a known center).
Constructibility implies that when m is a member of this sequence, the edge length 2*sin(Pi/m) of an m-gon with circumradius 1 can be written as a finite expression involving only integer numbers, the four basic arithmetic operations, and the square root. (End)
If x,y are terms, and gcd(x,y) is a power of 2 then x*y is also a term. - David James Sycamore, Aug 24 2024

Examples

			34 is a term of this sequence because a circle can be divided into exactly 34 parts. 7 is not.
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 183.
  • Allan Clark, Elements of Abstract Algebra, Chapter 4, Galois Theory, Dover Publications, NY 1984, page 124.
  • Duane W. DeTemple, "Carlyle circles and the Lemoine simplicity of polygon constructions." The American Mathematical Monthly 98.2 (1991): 97-108. - N. J. A. Sloane, Aug 05 2021
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • B. L. van der Waerden, Modern Algebra. Unger, NY, 2nd ed., Vols. 1-2, 1953, Vol. 1, p. 187.

Crossrefs

Subsequence of A295298. - Antti Karttunen, Nov 27 2017
A004729 and A051916 are subsequences. - Reinhard Zumkeller, Mar 20 2010
Cf. A000079, A004169, A000215, A099884, A019434 (Fermat primes).
Edge lengths of other constructible m-gons: A002194 (m=3), A002193 (4), A182007 (5), A101464 (8), A094214 (10), A101263 (12), A272534 (15), A272535 (16), A228787 (17), A272536 (20).
Positions of zeros in A293516 (apart from two initial -1's), and in A336469, positions of ones in A295660 and in A336477 (characteristic function).
Cf. also A046528.

Programs

  • Haskell
    a003401 n = a003401_list !! (n-1)
    a003401_list = map (+ 1) $ elemIndices 1 $ map a209229 a000010_list
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Mathematica
    Select[ Range[ 1300 ], IntegerQ[ Log[ 2, EulerPhi[ # ] ] ]& ] (* Olivier Gérard Feb 15 1999 *)
    (* first do *) Needs["DiscreteMath`Combinatorica`"] (* then *) Take[ Union[ Flatten[ NestList[2# &, Times @@@ Table[ UnrankSubset[n, Join[{1}, Table[2^2^i + 1, {i, 0, 4}]]], {n, 63}], 11]]], 60] (* Robert G. Wilson v, Jun 11 2005 *)
    nn=10; logs=Log[2,{2,3,5,17,257,65537}]; lim2=Floor[nn/logs[[1]]]; Sort[Reap[Do[z={i,j,k,l,m,n}.logs; If[z<=nn, Sow[2^z]], {i,0,lim2}, {j,0,1}, {k,0,1}, {l,0,1}, {m,0,1}, {n,0,1}]][[2,1]]]
    A092506 = {2, 3, 5, 17, 257, 65537}; s = Sort[Times @@@ Subsets@ A092506]; mx = 1300; Union@ Flatten@ Table[(2^n)*s[[i]], {i, 64}, {n, 0, Log2[mx/s[[i]]]}] (* Robert G. Wilson v, Jul 28 2014 *)
  • PARI
    for(n=1,10^4,my(t=eulerphi(n));if(t/2^valuation(t,2)==1,print1(n,", "))); \\ Joerg Arndt, Jul 29 2014
    
  • PARI
    is(n)=n>>=valuation(n,2); if(n<7, return(n>0)); my(k=logint(logint(n,2),2)); if(k>32, my(p=2^2^k+1); if(n%p, return(0)); n/=p; unknown=1; if(n%p==0, return(0)); p=0; if(is(n)==0, 0, "unknown [has large Fermat number in factorization]"), 4294967295%n==0) \\ Charles R Greathouse IV, Jan 09 2022
    
  • PARI
    is(n)=n>>=valuation(n,2); 4294967295%n==0 \\ valid for n <= 2^2^33, conjecturally valid for all n; Charles R Greathouse IV, Jan 09 2022
    
  • Python
    from sympy import totient
    A003401_list = [n for n in range(1,10**4) if format(totient(n),'b').count('1') == 1]
    # Chai Wah Wu, Jan 12 2015

Formula

Terms from 3 onward are computable as numbers such that cototient-of-totient equals the totient-of-totient: Flatten[Position[Table[co[eu[n]]-eu[eu[n]], {n, 1, 10000}], 0]] eu[m]=EulerPhi[m], co[m]=m-eu[m]. - Labos Elemer, Oct 19 2001, clarified by Antti Karttunen, Nov 27 2017
Any product of 2^k and distinct Fermat primes (primes of the form 2^(2^m)+1). - Sergio Pimentel, Apr 30 2004, edited by Franklin T. Adams-Watters, Jun 16 2006
If the well-known conjecture that there are only five prime Fermat numbers F_k=2^{2^k}+1, k=0,1,2,3,4 is true, then we have exactly: Sum_{n>=1} 1/a(n)= 2*Product_{k=0..4} (1+1/F_k) = 4869735552/1431655765 = 3.40147098978.... - Vladimir Shevelev and T. D. Noe, Dec 01 2010
log a(n) >> sqrt(n); if there are finitely many Fermat primes, then log a(n) ~ k log n for some k. - Charles R Greathouse IV, Oct 23 2015

Extensions

Definition clarified by Bill Gosper. - N. J. A. Sloane, Jun 14 2020

A045544 Odd values of n for which a regular n-gon can be constructed by compass and straightedge.

Original entry on oeis.org

3, 5, 15, 17, 51, 85, 255, 257, 771, 1285, 3855, 4369, 13107, 21845, 65535, 65537, 196611, 327685, 983055, 1114129, 3342387, 5570645, 16711935, 16843009, 50529027, 84215045, 252645135, 286331153, 858993459, 1431655765, 4294967295
Offset: 1

Views

Author

Keywords

Comments

If there are no more Fermat primes, then 4294967295 is the last term in the sequence.
From Daniel Forgues, Jun 17 2011: (Start)
The 31 = 2^5 - 1 terms of this sequence are the nonempty products of distinct Fermat primes. The 5 known Fermat primes are in A019434.
Prepending the empty product, i.e., 1, to this sequence gives A004729.
The initial term for this sequence is thus a(1) (offset=1), since a(0) should correspond to the omitted empty product, term a(0) of A004729.
Rows 1 to 31 of Sierpiński's triangle, if interpreted as a binary number converted to decimal (A001317), give a(1) to a(31). (End)

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 73 at pp. 181-182.

Crossrefs

Cf. A019434. Essentially same as A004729.
Coincides with A001317 for the first 31 terms only. - Robert G. Wilson v, Dec 22 2001
Cf. A053576.

Programs

  • Mathematica
    Union[Times@@@Rest[Subsets[{3,5,17,257,65537}]]] (* Harvey P. Dale, Sep 20 2011 *)

Formula

Each term is the product of distinct odd Fermat primes.
Sum_{n>=1} 1/a(n) = -1 + Product_{n>=1} (1+1/A019434(n)) = 0.7007354948... >= 1003212011/1431655765 = sigma(2^32-1)/(2^32-1) - 1, with equality if there are only five Fermat primes (A019434). - Amiram Eldar, Jan 22 2022

A094358 Squarefree products of factors of Fermat numbers (A023394).

Original entry on oeis.org

1, 3, 5, 15, 17, 51, 85, 255, 257, 641, 771, 1285, 1923, 3205, 3855, 4369, 9615, 10897, 13107, 21845, 32691, 54485, 65535, 65537, 114689, 163455, 164737, 196611, 274177, 319489, 327685, 344067, 494211, 573445, 822531, 823685, 958467, 974849, 983055
Offset: 1

Views

Author

Robert Munafo, Apr 26 2004

Keywords

Comments

641 is the first member not in sequences A001317, A004729, etc.
Conjectured (by Munafo, see link) to be the same as: numbers n such that 2^^n == 1 mod n, where 2^^n is A014221(n).
It is clear from the observations by Max Alekseyev in A023394 and the Chinese remainder theorem that any squarefree product b of divisors of Fermat numbers satisfies 2^(2^b) == 1 (mod b), hence satisfies Munafo's congruence above. The converse is true iff all Fermat numbers are squarefree. However, if nonsquarefree Fermat numbers exist, the criterion that is equivalent with Munafo's property would be "numbers b such that each prime power that divides b also divides some Fermat number". - Jeppe Stig Nielsen, Mar 05 2014
Also numbers b such that b is (squarefree and) a divisor of A051179(m) for some m. Or odd (squarefree) b where the multiplicative order of 2 mod b is a power of two. - Jeppe Stig Nielsen, Mar 07 2014
From Jianing Song, Nov 11 2023: (Start)
Also squarefree numbers k such that there exists i >= 1 such that k divides 2^^i - 1, where 2^^i = 2^2^...^2 (i times) = A014221(i): 2^^i == 1 (mod k) if and only if ord(2,k) divides 2^^(i-1) (ord(a,k) is the multiplicative order of a modulo k), so such i exists if and only if ord(2,k) is a power of 2. For such k, k divides 2^^i - 1 if and only if 2^^(i-2) >= log_2(ord(2,k)).
Note that 2^^(i-1) divides 2^^i implies that 2^^i - 1 divides 2^^(i+1) - 1, so this sequence is also squarefree numbers k such that k divides 2^^i - 1 for all sufficiently large i. (End)

Examples

			3 is a term because it is in A023394.
51 is a term because it is 3*17 and 17 is also in A023394.
153 = 3*3*17 is not a term because its factorization includes two 3's.
See the Munafo link for examples of the (conjectured) 2^^n == 1 (mod n) property.
		

Crossrefs

Programs

  • Mathematica
    kmax = 10^6;
    A023394 = Select[Prime[Range[kmax]], IntegerQ[Log[2, MultiplicativeOrder[2, #] ] ]&];
    Reap[For[k = 1, k <= kmax, k++, ff = FactorInteger[k]; If[k == 1 || AllTrue[ff, MemberQ[A023394, #[[1]]] && #[[2]] == 1 &], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Nov 03 2018 *)
  • PARI
    (  isOK1(n) = n%2==1 && hammingweight(znorder(Mod(2,n)))==1  ) ;  (  isOK2(n) = issquarefree(n) && isOK1(n)  )  \\ isOK1 and isOK2 differ only if n contains a squared prime that divides a Fermat number (none are known) \\ Jeppe Stig Nielsen, Apr 02 2014

Extensions

Edited by T. D. Noe, Feb 02 2009
Example brought in line with name/description by Robert Munafo, May 18 2011

A125866 Odd numbers k such that cos(2*Pi/k) is an algebraic number of a 3-smooth degree, but not 2-smooth.

Original entry on oeis.org

7, 9, 13, 19, 21, 27, 35, 37, 39, 45, 57, 63, 65, 73, 81, 91, 95, 97, 105, 109, 111, 117, 119, 133, 135, 153, 163, 171, 185, 189, 193, 195, 219, 221, 243, 247, 259, 273, 285, 291, 315, 323, 327, 333, 351, 357, 365, 399, 405, 433, 455, 459, 481, 485, 487, 489
Offset: 1

Views

Author

Artur Jasinski, Dec 13 2006

Keywords

Comments

Odd terms of A051913.
This sequence is infinite (unlike A004729), because it contains any A058383(n) times any power of 3.
A regular polygon of a(n) sides can be constructed if one also has an angle trisector.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local r,a,b;
      r:= numtheory:-phi(n);
      a:= padic:-ordp(r,2);
      b:= padic:-ordp(r,3);
      if b = 0 then return false fi;
      r = 2^a*3^b;
    end proc:
    select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, May 11 2020
  • Mathematica
    Do[If[Take[FactorInteger[EulerPhi[2n+1]][[ -1]], 1]=={3},Print[2n+1]],{n,1,10000}]

Extensions

Edited by Don Reble, Apr 24 2007

A235034 Numbers whose prime divisors, when multiplied together without carry-bits (as encodings of GF(2)[X]-polynomials, with A048720), produce the original number; numbers for which A234741(n) = n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 34, 37, 38, 40, 41, 43, 44, 46, 47, 48, 51, 52, 53, 56, 58, 59, 60, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 80, 82, 83, 85, 86, 88, 89, 92, 94, 95, 96, 97, 101
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Comments

If n is present, then 2n is present also, as shifting binary representation left never produces any carries.

Examples

			All primes occur in this sequence as no multiplication -> no need to add any intermediate products -> no carry bits produced.
Composite numbers like 15 are also present, as 15 = 3*5, and when these factors (with binary representations '11' and '101') are multiplied as:
   101
  1010
  ----
  1111 = 15
we see that the intermediate products 1*5 and 2*5 can be added together without producing any carry-bits (as they have no 1-bits in the same columns/bit-positions), so A048720(3,5) = 3*5 and thus 15 is included in this sequence.
		

Crossrefs

Gives the positions of zeros in A236378, i.e., n such that A234741(n) = n.
Intersection with A235035 gives A235032.
Other subsequences: A000040 (A091206 and also A091209), A045544 (A004729), A093641, A235040 (gives odd composites in this sequence), A235050, A235490.

A235040 After 1, composite odd numbers, whose prime divisors, when multiplied together without carry-bits (as codes for GF(2)[X]-polynomials, with A048720), yield the same number back.

Original entry on oeis.org

1, 15, 51, 85, 95, 111, 119, 123, 187, 219, 221, 255, 335, 365, 411, 447, 485, 511, 629, 655, 685, 697, 771, 831, 879, 959, 965, 1011, 1139, 1241, 1285, 1405, 1535, 1563, 1649, 1731, 1779, 1799, 1923, 1983, 2005, 2019, 2031, 2045, 2227, 2605, 2735, 2815, 2827
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Comments

Note: Start indexing from n=1 if you want just composite numbers. a(0)=1 is the only nonprime, noncomposite in this list.
The first term with three prime divisors is a(11) = 255 = 3*5*17.
The next terms with three prime divisors are
255, 3855, 13107, 21845, 24415, 28527, 30583, 31215, 31611, 31695, 32691, 48059, 56283, 56797, 61935, 65365, 87805, 98005, ...
Of these 24415 (= 5*19*257) is the first one with at least one prime factor that is not a Fermat prime (A019434).
The first term with four prime divisors is a(427) = 65535 = 3*5*17*257.
The first terms which are not multiples of any Fermat prime are: 511, 959, 3647, 4039, 4847, 5371, 7141, 7231, 7679, 7913, 8071, 9179, 12179, ... (511 = 7*73, 959 = 7*137, ...)

Examples

			15 = 3*5. When these factors (with binary representations '11' and '101') are multiplied as:
   101
  1010
  ----
  1111 = 15
we see that the intermediate products 1*5 and 2*5 can be added together without producing any carry-bits (as they have no 1-bits in the same columns/bit-positions), so A048720(3,5) = 3*5 and thus 15 is included in this sequence.
		

Crossrefs

Odd nonprimes in A235034. A235039 is a subsequence.
The composite terms in A045544 (A004729) all occur also here.

A143512 Numbers of the form 3^a * 5^b * 17^c * 257^d * 65537^e; products of Fermat primes.

Original entry on oeis.org

1, 3, 5, 9, 15, 17, 25, 27, 45, 51, 75, 81, 85, 125, 135, 153, 225, 243, 255, 257, 289, 375, 405, 425, 459, 625, 675, 729, 765, 771, 867, 1125, 1215, 1275, 1285, 1377, 1445, 1875, 2025, 2125, 2187, 2295, 2313, 2601, 3125, 3375, 3645, 3825, 3855, 4131, 4335, 4369
Offset: 1

Views

Author

T. D. Noe, Aug 21 2008

Keywords

Comments

Similar to A004729, which allows each Fermat prime to occur 0 or 1 times. Applying Euler's phi function to these numbers produces numbers in A143513.
If the well-known conjecture that there are only five prime Fermat numbers F_k = 2^(2^k) + 1, k=0,1,2,3,4, is true, then we have exactly Sum_{n>=1} 1/a(n) = Product_{k=0..4} F_k/(F_k-1) = 4294967295/2147483648 = 1.9999999995343387126922607421875. - Vladimir Shevelev and T. D. Noe, Dec 01 2010

Programs

  • Mathematica
    nn=60; logs=Log[2.,{3,5,17,257,65537}]; lim=Floor[nn/logs]; t={}; Do[z={i,j,k,l,m}.logs; If[z
    				

A058213 Triangular arrangement of solutions of phi(x) = 2^n (n >= 0), where phi=A000010 is Euler's totient function. Each row corresponds to a particular n and its length is n+2 for 0 <= n <= 31, 32 for n >= 32. (This assumes that there are only 5 Fermat primes.)

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 10, 12, 15, 16, 20, 24, 30, 17, 32, 34, 40, 48, 60, 51, 64, 68, 80, 96, 102, 120, 85, 128, 136, 160, 170, 192, 204, 240, 255, 256, 272, 320, 340, 384, 408, 480, 510, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 771, 1024, 1028, 1088
Offset: 0

Views

Author

Labos Elemer, Nov 30 2000

Keywords

Comments

phi(x) is a power of 2 if and only if x is a power of 2 multiplied by a product of distinct Fermat primes. So if, as is conjectured, there are only 5 Fermat primes, then there are only 32 possibilities for the odd part of x, namely the divisors of 2^32-1, given in A004729.
The same numbers, in increasing order, are given in A003401.
The first entry in row n is the n-th divisor of 2^32-1 for 0 <= n <= 31 (A004729) and is 2^(n+1) for n >= 32. The last entry in row n is given in A058215.

Examples

			Triangle begins:
  { 1,   2},
  { 3,   4,   6},
  { 5,   8,  10,  12},
  {15,  16,  20,  24,  30},
  {17,  32,  34,  40,  48,  60},
  {51,  64,  68,  80,  96, 102, 120},
  {85, 128, 136, 160, 170, 192, 204, 240},
  ...
		

Crossrefs

Programs

  • Mathematica
    phiinv[ n_, pl_ ] := Module[ {i, p, e, pe, val}, If[ pl=={}, Return[ If[ n==1, {1}, {} ] ] ]; val={}; p=Last[ pl ]; For[ e=0; pe=1, e==0||Mod[ n, (p-1)pe/p ]==0, e++; pe*=p, val=Join[ val, pe*phiinv[ If[ e==0, n, n*p/pe/(p-1) ], Drop[ pl, -1 ] ] ] ]; Sort[ val ] ]; phiinv[ n_ ] := phiinv[ n, Select[ 1+Divisors[ n ], PrimeQ ] ]; Join@@(phiinv[ 2^# ]&/@Range[ 0, 10 ]) (* phiinv[ n, pl ] = list of x with phi(x)=n and all prime divisors of x in list pl. phiinv[ n ] = list of x with phi(x)=n *)

Extensions

Edited by Dean Hickerson, Jan 25 2002

A058214 Sum of solutions of phi(x) = 2^n.

Original entry on oeis.org

3, 13, 35, 105, 231, 581, 1315, 3225, 6711, 15221, 32755, 74505, 154407, 339397, 718115, 1589145, 3243831, 6946421, 14482675, 31259145, 63894567, 135588037, 281203235, 601400985, 1219907127, 2557715317, 5267017715, 11123540745, 22600784679, 47205887429
Offset: 0

Views

Author

Labos Elemer, Nov 30 2000

Keywords

Examples

			For n = 6, 2^n = 64; the solutions of phi(x) = 64 are {85,128,136,160,170,192,204,240}, whose sum is a(6) = 1315.
		

Crossrefs

Programs

  • Mathematica
    phiinv[n_, pl_] := Module[{i, p, e, pe, val}, If[pl=={}, Return[If[n==1, {1}, {}]]]; val={}; p=Last[pl]; For[e=0; pe=1, e==0||Mod[n, (p-1)pe/p]==0, e++; pe*=p, val=Join[val, pe*phiinv[If[e==0, n, n*p/pe/(p-1)], Drop[pl, -1]]]]; Sort[val]]; phiinv[n_] := phiinv[n, Select[1+Divisors[n], PrimeQ]]; Table[Plus@@phiinv[2^n], {n, 0, 30}] (* phiinv[n, pl] = list of x with phi(x)=n and all prime divisors of x in list pl. phiinv[n] = list of x with phi(x)=n *)
  • PARI
    a(n) = vecsum(invphi(2^n)); \\ Amiram Eldar, Nov 11 2024, using Max Alekseyev's invphi.gp

Formula

If there are only five Fermat primes, then a(n) = 2^(n-30) * 99852066765 for n > 31. - T. D. Noe, Jun 21 2012

Extensions

Edited by Dean Hickerson, Jan 25 2002
a(28)-a(29) from Donovan Johnson, Oct 22 2011

A058215 Largest solution of phi(x) = 2^n.

Original entry on oeis.org

2, 6, 12, 30, 60, 120, 240, 510, 1020, 2040, 4080, 8160, 16320, 32640, 65280, 131070, 262140, 524280, 1048560, 2097120, 4194240, 8388480, 16776960, 33553920, 67107840, 134215680, 268431360, 536862720, 1073725440, 2147450880, 4294901760, 8589934590
Offset: 0

Views

Author

Labos Elemer, Nov 30 2000

Keywords

Comments

The ratio of adjacent terms is 2 except for five terms (if there are exactly five Fermat primes). - T. D. Noe, Jun 21 2012

Examples

			For n = 6, 2^n = 64; the solutions of phi(x) = 64 are {85,128,136,160,170,192,204,240}; the largest is a(6) = 240.
		

Crossrefs

Programs

  • Mathematica
    phiinv[ n_, pl_ ] := Module[ {i, p, e, pe, val}, If[ pl=={}, Return[ If[ n==1, {1}, {} ] ] ]; val={}; p=Last[ pl ]; For[ e=0; pe=1, e==0||Mod[ n, (p-1)pe/p ]==0, e++; pe*=p, val=Join[ val, pe*phiinv[ If[ e==0, n, n*p/pe/(p-1) ], Drop[ pl, -1 ] ] ] ]; Sort[ val ] ]; phiinv[ n_ ] := phiinv[ n, Select[ 1+Divisors[ n ], PrimeQ ] ]; Table[ phiinv[ 2^n ][ [ -1 ] ], {n, 0, 30} ] (* phiinv[ n, pl ] = list of x with phi(x)=n and all prime divisors of x in list pl. phiinv[ n ] = list of x with phi(x)=n *)
  • PARI
    a(n) = invphiMax(2^n); \\ Amiram Eldar, Nov 11 2024, using Max Alekseyev's invphi.gp

Formula

Assuming there are only 5 Fermat primes (A019434), a(n) = 2^(n-30)*(2^32-1) for n >= 31.

Extensions

Edited by Dean Hickerson, Jan 25 2002
Showing 1-10 of 14 results. Next