cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A078164 Numbers k such that phi(k) is a perfect biquadrate.

Original entry on oeis.org

1, 2, 17, 32, 34, 40, 48, 60, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 1297, 1387, 1417, 1729, 1971, 2109, 2223, 2289, 2331, 2445, 2457, 2565, 2594, 2608, 2774, 2812, 2834, 2835, 3052, 3260, 3458, 3888, 3912, 3924, 3942, 3996, 4104, 4212, 4218
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

Corresponding values of phi include 1, 16, 256, 1296, 4096, ... and these arise several times each.
a(3) = A053576(4).
A013776 is a subsequence since phi(2^(4*n+1)) = (2^n)^4. - Bernard Schott, Sep 22 2022
Subsequence of primes is A037896 since in this case: phi(k^4+1) = k^4. - Bernard Schott, Mar 05 2023

Crossrefs

Subsequence of A039770. A037896 is a subsequence.
Sequences where phi(k) is a perfect power: A039770 (square), A039771 (cube), this sequence (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th).

Programs

  • Mathematica
    k=4; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Select[Range[5000],IntegerQ[Surd[EulerPhi[#],4]]&] (* Harvey P. Dale, Apr 30 2015 *)
  • PARI
    is(n)=ispower(eulerphi(n),4) \\ Charles R Greathouse IV, Apr 24 2020
    
  • Python
    from itertools import count, islice
    from sympy import totient, integer_nthroot
    def A078164_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:integer_nthroot(totient(n),4)[1], count(max(1,startvalue)))
    A078164_list = list(islice(A078164_gen(),20)) # Chai Wah Wu, Feb 28 2023

A078165 Numbers k such that phi(k) is a perfect 5th power.

Original entry on oeis.org

1, 2, 51, 64, 68, 80, 96, 102, 120, 1285, 2048, 2056, 2176, 2560, 2570, 2720, 3072, 3084, 3264, 3840, 4080, 7957, 8227, 8279, 9079, 9139, 9709, 9919, 10355, 10595, 11667, 11673, 11691, 12099, 12393, 12483, 12753, 12987, 13797, 14715, 14763
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

As phi(2^(5*n+1)) = (2^n)^5, A013822 is a subsequence. - Bernard Schott, Sep 26 2022
Numbers of the form u = 2^(5*k)*3^(5*m + 1), k>=1, m>=0, are terms because phi(u) = 2^(5*k)*3^(5*m) = (2^k*3^m)^5. - Marius A. Burtea, Sep 26 2022

Examples

			phi of the sequence includes 1, 32, 1024, 7776, ...; powers arise several times; a(3) = A053576(5) = 51.
		

Crossrefs

A013822 is a subsequence.
Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th, this sequence), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th power), A001317, A053576, A045544, A000010.

Programs

  • Mathematica
    k=5; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 5000}]
    Select[Range[15000],IntegerQ[Surd[EulerPhi[#],5]]&] (* Harvey P. Dale, Jul 26 2019 *)
  • PARI
    is(n)=ispower(eulerphi(n),5) \\ Charles R Greathouse IV, Apr 24 2020

A078166 Numbers k such that phi(k) is a perfect sixth power.

Original entry on oeis.org

1, 2, 85, 128, 136, 160, 170, 192, 204, 240, 4369, 8192, 8224, 8704, 8738, 10240, 10280, 10880, 12288, 12336, 13056, 15360, 15420, 16320, 47197, 47239, 47989, 49267, 49589, 50557, 51319, 52429, 52649, 55699, 57589, 57953, 59495, 63973
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Comments

As phi(2^(6*n+1)) = (2^n)^6, A277757 is a subsequence. - Bernard Schott, Sep 23 2022

Examples

			phi of the sequence includes 1, 64, 4096, 46656,..; powers arise several times; a(3)= A053576(6) = 85; in sequence relatively large jumps are observable when power of new numbers appear.
		

Crossrefs

A277757 is a subsequence.
Numbers k such that phi(k) is a perfect power: A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th, this sequence), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th power).

Programs

A078168 Numbers k such that phi(k) is a perfect 8th power.

Original entry on oeis.org

1, 2, 257, 512, 514, 544, 640, 680, 768, 816, 960, 1020, 65537, 131072, 131074, 131584, 139264, 139808, 163840, 164480, 174080, 174760, 196608, 197376, 208896, 209712, 245760, 246720, 261120, 262140, 1682227, 1683109, 1683559, 1683937
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Examples

			phi of the sequence includes 1, 256, 65536, 1679616, etc.; powers arise several times; a(3) = A053576(7) = 257; in sequence smoother ranges and quite large jumps arise when power of new numbers appear as phi-values.
		

Crossrefs

Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th, this sequence), A078169 (9th), A078170 (10th power), A001317, A053576, A045544, A000010.

Programs

  • Mathematica
    k=8; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 10000000}]
    Select[Range[2*10^6],IntegerQ[Surd[EulerPhi[#],8]]&] (* Harvey P. Dale, Oct 20 2014 *)
  • PARI
    is(n)=ispower(eulerphi(n),8) \\ Charles R Greathouse IV, Apr 24 2020

A078169 Numbers k such that phi(k) is a perfect 9th power.

Original entry on oeis.org

1, 2, 771, 1024, 1028, 1088, 1280, 1360, 1536, 1542, 1632, 1920, 2040, 327685, 524288, 524296, 526336, 557056, 559232, 655360, 655370, 657920, 696320, 699040, 786432, 786444, 789504, 835584, 838848, 983040, 986880, 1044480, 1048560
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Examples

			phi of the sequence includes 1, 512, 262144,.. etc.; powers arise several times; a(3) = A053576(9) = 771; in sequence smoother ranges and quite large jumps arise when power of new numbers appear as phi-values.
		

Crossrefs

Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th, this sequence), A078170 (10th power), A001317, A053576, A045544, A000010.

Programs

  • Mathematica
    k=9; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 10000000}]
  • PARI
    is(n)=ispower(eulerphi(n),9) \\ Charles R Greathouse IV, Apr 24 2020

A078170 Numbers k such that phi(k) is a perfect tenth power.

Original entry on oeis.org

1, 2, 1285, 2048, 2056, 2176, 2560, 2570, 2720, 3072, 3084, 3264, 3840, 4080, 1114129, 2097152, 2097184, 2105344, 2228224, 2228258, 2236928, 2621440, 2621480, 2631680, 2785280, 2796160, 3145728, 3145776, 3158016, 3342336
Offset: 1

Views

Author

Labos Elemer, Nov 27 2002

Keywords

Examples

			phi of the sequence includes 1, 1024, 1048576,.. etc.; powers emerge several times; a(3) = A053576(10) = 1285; in sequence smoother ranges and quite large jumps alternate when power of new numbers appear as phi-values.
		

Crossrefs

Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th power, this sequence), A001317, A053576, A045544, A000010.

Programs

  • Mathematica
    k=10; Do[s=EulerPhi[n]^(1/k); If[IntegerQ[s], Print[n]], {n, 1, 10000000}]
  • PARI
    is(n)=ispower(eulerphi(n),10) \\ Charles R Greathouse IV, Apr 24 2020

A114573 Numbers k such that phi(k) is a perfect 11th power.

Original entry on oeis.org

1, 2, 3855, 4096, 4112, 4352, 5120, 5140, 5440, 6144, 6168, 6528, 7680, 7710, 8160, 5570645, 8388608, 8388736, 8421376, 8912896, 8913032, 8947712, 10485760, 10485920, 10526720, 11141120, 11141290, 11184640, 12582912, 12583104
Offset: 1

Views

Author

Stefan Steinerberger, Feb 17 2006

Keywords

Comments

Given the fact that phi(n) > sqrt(n) for all n except n=2 and n=6 we can see that every 11th power does appear as value only a finite number of times. What bounds on the density of this sequence can be proved?

Examples

			phi(4096) = 2048 = 2^11.
		

Crossrefs

Cf. A039770 (square), A039771 (cube), A078164 (4th), A078165 (5th), A078166 (6th), A078167 (7th), A078168 (8th), A078169 (9th), A078170 (10th power), A000010.

Programs

  • Mathematica
    For[n = 1, n < 100000, n++, If[EulerPhi[n]^(1/11) == Floor[EulerPhi[n]^(1/11)], Print[n]]]

Extensions

More terms from Stefan Steinerberger, May 16 2007
Showing 1-7 of 7 results.