cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058254 a(n) = lcm{prime(i)-1, i=1..n}.

Original entry on oeis.org

1, 1, 2, 4, 12, 60, 60, 240, 720, 7920, 55440, 55440, 55440, 55440, 55440, 1275120, 16576560, 480720240, 480720240, 480720240, 480720240, 480720240, 480720240, 19709529840, 19709529840, 39419059680, 197095298400, 3350620072800, 177582863858400, 532748591575200
Offset: 0

Views

Author

Labos Elemer, Dec 06 2000

Keywords

Comments

A002110(n) divides b^(a(n)+1) - b for every integer b. - Thomas Ordowski, Nov 24 2014
What is the asymptotic growth of this sequence? a(n) <= A005867(n) <= A002110(n) < e^((1 + o(1))n log n) but this is a large overestimate. - Charles R Greathouse IV, Dec 03 2014
Alexander Kalmynin gives a proof that log a(n) = O(p log log p/log p) where p is the n-th prime, see the MathOverflow link. - Charles R Greathouse IV, Sep 17 2021

Examples

			For n = 5 and 6: a(5) = a(6) = LCM[1, 2, 4, 6, 10, 12] = 60.
		

Crossrefs

Programs

  • Haskell
    a058254 n = a058254_list !! (n-1)
    a058254_list = scanl1 lcm a006093_list
    -- Reinhard Zumkeller, May 01 2013
    
  • Maple
    seq(ilcm(seq(ithprime(i)-1,i=1..n)), n=0..100); # Robert Israel, Nov 24 2014
  • Mathematica
    Table[LCM @@ (Prime@ Range[1, n] - 1), {n, 27}] (* Michael De Vlieger, Dec 31 2016 *)
  • PARI
    a(n)=lcm(apply(p->p-1, primes(n))) \\ Charles R Greathouse IV, Dec 03 2014

Formula

a(n) = A002322(A002110(n)). - Thomas Ordowski, Nov 24 2014

Extensions

Offset corrected by Reinhard Zumkeller, May 01 2013
a(0)=1 prepended by Alois P. Heinz, Apr 01 2021