A058262 a(n) is the quotient obtained when the totient of primorial (that is, the product of p-1 values) is divided by the LCM of the same p-1 values.
1, 1, 2, 4, 8, 96, 384, 2304, 4608, 18432, 552960, 19906560, 796262400, 33443020800, 66886041600, 267544166400, 535088332800, 32105299968000, 2118949797888000, 148326485852160000, 10679506981355520000
Offset: 0
Keywords
Examples
n=7: lcm(2-1, 3-1, 5-1, 7-1, 11-1, 13-1, 17-1) = lcm(1,2,4,6,10,12,16) = 240; phi(2*3*5*7*11*13*17) = phi(510510) = 92160 = A005867(8); a(7) = 92160/240 = 384.
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..150
Programs
-
Maple
with(numtheory): nmax:=22: p:=seq([seq(ithprime(k)-1,k = 1 .. n)],n=1..nmax): a:seq(phi(mul(ithprime(i),i=1..n))/lcm(seq(p[n][i],i=1..nops(p[n]))),n=1..nmax); # Muniru A Asiru, Jul 08 2018
-
PARI
a(n) = my(v=vector(n+1, k, prime(k)-1)); prod(k=1, #v, v[k])/lcm(v); \\ Michel Marcus, Jul 08 2018
Extensions
Definition revised by Editors, Jul 15 2018