A058277 Number of values of k such that phi(k) = n, where n runs through the values (A002202) taken by phi.
2, 3, 4, 4, 5, 2, 6, 6, 4, 5, 2, 10, 2, 2, 7, 8, 9, 4, 3, 2, 11, 2, 2, 3, 2, 9, 8, 2, 2, 17, 2, 10, 2, 6, 6, 3, 17, 4, 2, 3, 2, 9, 2, 6, 3, 17, 2, 9, 2, 7, 2, 2, 3, 21, 2, 2, 7, 12, 4, 3, 2, 12, 2, 8, 2, 10, 4, 2, 21, 2, 2, 8, 3, 4, 2, 3, 19, 5, 2, 8, 2, 2, 6, 2, 31, 2, 9, 10
Offset: 1
References
- Édouard Lucas, Théorie des Nombres, Blanchard 1958.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
- Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
- R. D. Carmichael, Note on Euler's totient function, Bull. Amer. Math. Soc. 28 (1922), pp. 109-110.
- Paul Erdős, Some remarks on Euler's totient function, Acta Arith. 4 (1958), pp. 10-19.
- M. Farrokhi D. G., Gap function to compute the inverse of Euler's totient function.
- Kevin Ford, The distribution of totients, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 27-34.
- Nick Hobson, Solution to puzzle 152: Totient valence.
- Eric Weisstein's World of Mathematics, Totient Valence Function.
Crossrefs
Programs
-
Haskell
import Data.List (group) a058277 n = a058277_list !! (n-1) a058277_list = map length $ group a007614_list -- Reinhard Zumkeller, Nov 22 2015
-
Mathematica
max = 300; inversePhi[?OddQ] = {}; inversePhi[1] = {1, 2}; inversePhi[m] := Module[{p, nmax, n, nn}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m * Times @@ (p/(p-1)); n = m; nn = Reap[While[n <= nmax, If[EulerPhi[n] == m, Sow[n]]; n++]] // Last; If[nn == {}, {}, First[nn] ] ]; Reap[For[n = 1, n <= max, n = If[n == 1, 2, n+2], nn = inversePhi[n] ; If[nn != {} , Sow[nn // Length] ] ] ] // Last // First (* Jean-François Alcover, Nov 21 2013 *)
-
PARI
lista(nmax) = {my(m); for(n = 1, nmax, m = invphiNum(n); if(m > 0, print1(m, ", ")));} \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
Extensions
More terms from Nick Hobson, Nov 04 2006
Comments