cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A000010 Euler totient function phi(n): count numbers <= n and prime to n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44
Offset: 1

Views

Author

Keywords

Comments

Number of elements in a reduced residue system modulo n.
Degree of the n-th cyclotomic polynomial (cf. A013595). - Benoit Cloitre, Oct 12 2002
Number of distinct generators of a cyclic group of order n. Number of primitive n-th roots of unity. (A primitive n-th root x is such that x^k is not equal to 1 for k = 1, 2, ..., n - 1, but x^n = 1.) - Lekraj Beedassy, Mar 31 2005
Also number of complex Dirichlet characters modulo n; Sum_{k=1..n} a(k) is asymptotic to (3/Pi^2)*n^2. - Steven Finch, Feb 16 2006
a(n) is the highest degree of irreducible polynomial dividing 1 + x + x^2 + ... + x^(n-1) = (x^n - 1)/(x - 1). - Alexander Adamchuk, Sep 02 2006, corrected Sep 27 2006
a(p) = p - 1 for prime p. a(n) is even for n > 2. For n > 2, a(n)/2 = A023022(n) = number of partitions of n into 2 ordered relatively prime parts. - Alexander Adamchuk, Jan 25 2007
Number of automorphisms of the cyclic group of order n. - Benoit Jubin, Aug 09 2008
a(n+2) equals the number of palindromic Sturmian words of length n which are "bispecial", prefix or suffix of two Sturmian words of length n + 1. - Fred Lunnon, Sep 05 2010
Suppose that a and n are coprime positive integers, then by Euler's totient theorem, any factor of n divides a^phi(n) - 1. - Lei Zhou, Feb 28 2012
If m has k prime factors, (p_1, p_2, ..., p_k), then phi(m*n) = (Product_{i=1..k} phi (p_i*n))/phi(n)^(k-1). For example, phi(42*n) = phi(2*n)*phi(3*n)*phi(7*n)/phi(n)^2. - Gary Detlefs, Apr 21 2012
Sum_{n>=1} a(n)/n! = 1.954085357876006213144... This sum is referenced in Plouffe's inverter. - Alexander R. Povolotsky, Feb 02 2013 (see A336334. - Hugo Pfoertner, Jul 22 2020)
The order of the multiplicative group of units modulo n. - Michael Somos, Aug 27 2013
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Dec 30 2016
From Eric Desbiaux, Jan 01 2017: (Start)
a(n) equals the Ramanujan sum c_n(n) (last term on n-th row of triangle A054533).
a(n) equals the Jordan function J_1(n) (cf. A007434, A059376, A059377, which are the Jordan functions J_2, J_3, J_4, respectively). (End)
For n > 1, a(n) appears to be equal to the number of semi-meander solutions for n with top arches containing exactly 2 mountain ranges and exactly 2 arches of length 1. - Roger Ford, Oct 11 2017
a(n) is the minimum dimension of a lattice able to generate, via cut-and-project, the quasilattice whose diffraction pattern features n-fold rotational symmetry. The case n=15 is the first n > 1 in which the following simpler definition fails: "a(n) is the minimum dimension of a lattice with n-fold rotational symmetry". - Felix Flicker, Nov 08 2017
Number of cyclic Latin squares of order n with the first row in ascending order. - Eduard I. Vatutin, Nov 01 2020
a(n) is the number of rational numbers p/q >= 0 (in lowest terms) such that p + q = n. - Rémy Sigrist, Jan 17 2021
From Richard L. Ollerton, May 08 2021: (Start)
Formulas for the numerous OEIS entries involving Dirichlet convolution of a(n) and some sequence h(n) can be derived using the following (n >= 1):
Sum_{d|n} phi(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k)) [see P. H. van der Kamp link] = Sum_{d|n} h(d)*phi(n/d) = Sum_{k=1..n} h(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). Similarly,
Sum_{d|n} phi(d)*h(d) = Sum_{k=1..n} h(n/gcd(n,k)) = Sum_{k=1..n} h(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
More generally,
Sum_{d|n} h(d) = Sum_{k=1..n} h(gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))/phi(n/gcd(n,k)).
In particular, for sequences involving the Möbius transform:
Sum_{d|n} mu(d)*h(n/d) = Sum_{k=1..n} h(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)) = Sum_{k=1..n} h(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)), where mu = A008683.
Use of gcd(n,k)*lcm(n,k) = n*k and phi(gcd(n,k))*phi(lcm(n,k)) = phi(n)*phi(k) provide further variations. (End)
From Richard L. Ollerton, Nov 07 2021: (Start)
Formulas for products corresponding to the sums above may found using the substitution h(n) = log(f(n)) where f(n) > 0 (for example, cf. formulas for the sum A018804 and product A067911 of gcd(n,k)):
Product_{d|n} f(n/d)^phi(d) = Product_{k=1..n} f(gcd(n,k)) = Product_{d|n} f(d)^phi(n/d) = Product_{k=1..n} f(n/gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d)^phi(d) = Product_{k=1..n} f(n/gcd(n,k)) = Product_{k=1..n} f(gcd(n,k))^(phi(gcd(n,k))/phi(n/gcd(n,k))),
Product_{d|n} f(d) = Product_{k=1..n} f(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(1/phi(n/gcd(n,k))),
Product_{d|n} f(n/d)^mu(d) = Product_{k=1..n} f(gcd(n,k))^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} f(n/gcd(n,k))^(mu(gcd(n,k))/phi(n/gcd(n,k))), where mu = A008683. (End)
a(n+1) is the number of binary words with exactly n distinct subsequences (when n > 0). - Radoslaw Zak, Nov 29 2021

Examples

			G.f. = x + x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 4*x^8 + 6*x^9 + 4*x^10 + ...
a(8) = 4 with {1, 3, 5, 7} units modulo 8. a(10) = 4 with {1, 3, 7, 9} units modulo 10. - _Michael Somos_, Aug 27 2013
From _Eduard I. Vatutin_, Nov 01 2020: (Start)
The a(5)=4 cyclic Latin squares with the first row in ascending order are:
  0 1 2 3 4   0 1 2 3 4   0 1 2 3 4   0 1 2 3 4
  1 2 3 4 0   2 3 4 0 1   3 4 0 1 2   4 0 1 2 3
  2 3 4 0 1   4 0 1 2 3   1 2 3 4 0   3 4 0 1 2
  3 4 0 1 2   1 2 3 4 0   4 0 1 2 3   2 3 4 0 1
  4 0 1 2 3   3 4 0 1 2   2 3 4 0 1   1 2 3 4 0
(End)
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 24.
  • M. Baake and U. Grimm, Aperiodic Order Vol. 1: A Mathematical Invitation, Encyclopedia of Mathematics and its Applications 149, Cambridge University Press, 2013: see Tables 3.1 and 3.2.
  • Florian Cajori, A History of Mathematical Notations, Dover edition (2012), par. 409.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 193.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 154-156.
  • C. W. Curtis, Pioneers of Representation Theory ..., Amer. Math. Soc., 1999; see p. 3.
  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Ellipses, Paris, 2004, Problème 529, pp. 71-257.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 1, Chapter V.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 115-119.
  • Carl Friedrich Gauss, "Disquisitiones Arithmeticae", Yale University Press, 1965; see p. 21.
  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, p. 137.
  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B36.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, th. 60, 62, 63, 288, 323, 328, 330.
  • Peter Hilton and Jean Pedersen, A Mathematical Tapestry, Demonstrating the Beautiful Unity of Mathematics, Cambridge University Press, pages 261-264, the Coach theorem.
  • Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.2.21 pp. 281-294.
  • G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, New York, Heidelberg, Berlin, 2 vols., 1976, Vol. II, problem 71, p. 126.
  • Paulo Ribenboim, The New Book of Prime Number Records.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 28-33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 162-167.

Crossrefs

Cf. A002088 (partial sums), A008683, A003434 (steps to reach 1), A007755, A049108, A002202 (values), A011755 (Sum k*phi(k)).
Cf. also A005277 (nontotient numbers). For inverse see A002181, A006511, A058277.
Jordan function J_k(n) is a generalization - see A059379 and A059380 (triangle of values of J_k(n)), this sequence (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5).
Row sums of triangles A134540, A127448, A143239, A143353 and A143276.
Equals right and left borders of triangle A159937. - Gary W. Adamson, Apr 26 2009
Values for prime powers p^e: A006093 (e=1), A036689 (e=2), A135177 (e=3), A138403 (e=4), A138407 (e=5), A138412 (e=6).
Values for perfect powers n^e: A002618 (e=2), A053191 (e=3), A189393 (e=4), A238533 (e=5), A306411 (e=6), A239442 (e=7), A306412 (e=8), A239443 (e=9).
Cf. A076479.
Cf. A023900 (Dirichlet inverse of phi), A306633 (Dgf at s=3).

Programs

  • Axiom
    [eulerPhi(n) for n in 1..100]
    
  • Haskell
    a n = length (filter (==1) (map (gcd n) [1..n])) -- Allan C. Wechsler, Dec 29 2014
    
  • Julia
    # Computes the first N terms of the sequence.
    function A000010List(N)
        phi = [i for i in 1:N + 1]
        for i in 2:N + 1
            if phi[i] == i
                for j in i:i:N + 1
                    phi[j] -= div(phi[j], i)
        end end end
    return phi end
    println(A000010List(68))  # Peter Luschny, Sep 03 2023
  • Magma
    [ EulerPhi(n) : n in [1..100] ]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Maple
    with(numtheory): A000010 := phi; [ seq(phi(n), n=1..100) ]; # version 1
    with(numtheory): phi := proc(n) local i,t1,t2; t1 := ifactors(n)[2]; t2 := n*mul((1-1/t1[i][1]),i=1..nops(t1)); end; # version 2
    # Alternative without library function:
    A000010List := proc(N) local i, j, phi;
        phi := Array([seq(i, i = 1 .. N+1)]);
        for i from 2 to N + 1 do
            if phi[i] = i then
                for j from i by i to N + 1 do
                    phi[j] := phi[j] - iquo(phi[j], i) od
            fi od;
    return phi end:
    A000010List(68);  # Peter Luschny, Sep 03 2023
  • Mathematica
    Array[EulerPhi, 70]
  • Maxima
    makelist(totient(n),n,0,1000); /* Emanuele Munarini, Mar 26 2011 */
    
  • PARI
    {a(n) = if( n==0, 0, eulerphi(n))}; /* Michael Somos, Feb 05 2011 */
    
  • Python
    from sympy.ntheory import totient
    print([totient(i) for i in range(1, 70)])  # Indranil Ghosh, Mar 17 2017
    
  • Python
    # Note also the implementation in A365339.
    
  • Sage
    def A000010(n): return euler_phi(n) # Jaap Spies, Jan 07 2007
    
  • Sage
    [euler_phi(n) for n in range(1, 70)]  # Zerinvary Lajos, Jun 06 2009
    

Formula

phi(n) = n*Product_{distinct primes p dividing n} (1 - 1/p).
Sum_{d divides n} phi(d) = n.
phi(n) = Sum_{d divides n} mu(d)*n/d, i.e., the Moebius transform of the natural numbers; mu() = Moebius function A008683().
Dirichlet generating function Sum_{n>=1} phi(n)/n^s = zeta(s-1)/zeta(s). Also Sum_{n >= 1} phi(n)*x^n/(1 - x^n) = x/(1 - x)^2.
Multiplicative with a(p^e) = (p - 1)*p^(e-1). - David W. Wilson, Aug 01 2001
Sum_{n>=1} (phi(n)*log(1 - x^n)/n) = -x/(1 - x) for -1 < x < 1 (cf. A002088) - Henry Bottomley, Nov 16 2001
a(n) = binomial(n+1, 2) - Sum_{i=1..n-1} a(i)*floor(n/i) (see A000217 for inverse). - Jon Perry, Mar 02 2004
It is a classical result (certainly known to Landau, 1909) that lim inf n/phi(n) = 1 (taking n to be primes), lim sup n/(phi(n)*log(log(n))) = e^gamma, with gamma = Euler's constant (taking n to be products of consecutive primes starting from 2 and applying Mertens' theorem). See e.g. Ribenboim, pp. 319-320. - Pieter Moree, Sep 10 2004
a(n) = Sum_{i=1..n} |k(n, i)| where k(n, i) is the Kronecker symbol. Also a(n) = n - #{1 <= i <= n : k(n, i) = 0}. - Benoit Cloitre, Aug 06 2004 [Corrected by Jianing Song, Sep 25 2018]
Conjecture: Sum_{i>=2} (-1)^i/(i*phi(i)) exists and is approximately 0.558 (A335319). - Orges Leka (oleka(AT)students.uni-mainz.de), Dec 23 2004
From Enrique Pérez Herrero, Sep 07 2010: (Start)
a(n) = Sum_{i=1..n} floor(sigma_k(i*n)/sigma_k(i)*sigma_k(n)), where sigma_2 is A001157.
a(n) = Sum_{i=1..n} floor(tau_k(i*n)/tau_k(i)*tau_k(n)), where tau_3 is A007425.
a(n) = Sum_{i=1..n} floor(rad(i*n)/rad(i)*rad(n)), where rad is A007947. (End)
a(n) = A173557(n)*A003557(n). - R. J. Mathar, Mar 30 2011
a(n) = A096396(n) + A096397(n). - Reinhard Zumkeller, Mar 24 2012
phi(p*n) = phi(n)*(floor(((n + p - 1) mod p)/(p - 1)) + p - 1), for primes p. - Gary Detlefs, Apr 21 2012
For odd n, a(n) = 2*A135303((n-1)/2)*A003558((n-1)/2) or phi(n) = 2*c*k; the Coach theorem of Pedersen et al. Cf. A135303. - Gary W. Adamson, Aug 15 2012
G.f.: Sum_{n>=1} mu(n)*x^n/(1 - x^n)^2, where mu(n) = A008683(n). - Mamuka Jibladze, Apr 05 2015
a(n) = n - cototient(n) = n - A051953(n). - Omar E. Pol, May 14 2016
a(n) = lim_{s->1} n*zeta(s)*(Sum_{d divides n} A008683(d)/(e^(1/d))^(s-1)), for n > 1. - Mats Granvik, Jan 26 2017
Conjecture: a(n) = Sum_{a=1..n} Sum_{b=1..n} Sum_{c=1..n} 1 for n > 1. The sum is over a,b,c such that n*c - a*b = 1. - Benedict W. J. Irwin, Apr 03 2017
a(n) = Sum_{j=1..n} gcd(j, n) cos(2*Pi*j/n) = Sum_{j=1..n} gcd(j, n) exp(2*Pi*i*j/n) where i is the imaginary unit. Notice that the Ramanujan's sum c_n(k) := Sum_{j=1..n, gcd(j, n) = 1} exp(2*Pi*i*j*k/n) gives a(n) = Sum_{k|n} k*c_(n/k)(1) = Sum_{k|n} k*mu(n/k). - Michael Somos, May 13 2018
G.f.: x*d/dx(x*d/dx(log(Product_{k>=1} (1 - x^k)^(-mu(k)/k^2)))), where mu(n) = A008683(n). - Mamuka Jibladze, Sep 20 2018
a(n) = Sum_{d|n} A007431(d). - Steven Foster Clark, May 29 2019
G.f. A(x) satisfies: A(x) = x/(1 - x)^2 - Sum_{k>=2} A(x^k). - Ilya Gutkovskiy, Sep 06 2019
a(n) >= sqrt(n/2) (Nicolas). - Hugo Pfoertner, Jun 01 2020
a(n) > n/(exp(gamma)*log(log(n)) + 5/(2*log(log(n)))), except for n=223092870 (Rosser, Schoenfeld). - Hugo Pfoertner, Jun 02 2020
From Bernard Schott, Nov 28 2020: (Start)
Sum_{m=1..n} 1/a(m) = A028415(n)/A048049(n) -> oo when n->oo.
Sum_{n >= 1} 1/a(n)^2 = A109695.
Sum_{n >= 1} 1/a(n)^3 = A335818.
Sum_{n >= 1} 1/a(n)^k is convergent iff k > 1.
a(2n) = a(n) iff n is odd, and, a(2n) > a(n) iff n is even. (End) [Actually, a(2n) = 2*a(n) for even n. - Jianing Song, Sep 18 2022]
a(n) = 2*A023896(n)/n, n > 1. - Richard R. Forberg, Feb 03 2021
From Richard L. Ollerton, May 09 2021: (Start)
For n > 1, Sum_{k=1..n} phi^{(-1)}(n/gcd(n,k))*a(gcd(n,k))/a(n/gcd(n,k)) = 0, where phi^{(-1)} = A023900.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(gcd(n,k)))*rad(gcd(n,k))/gcd(n,k) = 0.
For n > 1, Sum_{k=1..n} a(gcd(n,k))*mu(rad(n/gcd(n,k)))*rad(n/gcd(n,k))*gcd(n,k) = 0.
Sum_{k=1..n} a(gcd(n,k))/a(n/gcd(n,k)) = n. (End)
a(n) = Sum_{d|n, e|n} gcd(d, e)*mobius(n/d)*mobius(n/e) (the sum is a multiplicative function of n by Tóth, and takes the value p^e - p^(e-1) for n = p^e, a prime power). - Peter Bala, Jan 22 2024
Sum_{n >= 1} phi(n)*x^n/(1 + x^n) = x + 3*x^3 + 5*x^5 + 7*x^7 + ... = Sum_{n >= 1} phi(2*n-1)*x^(2*n-1)/(1 - x^(4*n-2)). For the first equality see Pólya and Szegő, problem 71, p. 126. - Peter Bala, Feb 29 2024
Conjecture: a(n) = lim_{k->oo} (n^(k + 1))/A000203(n^k). - Velin Yanev, Dec 04 2024 [A000010(p) = p-1, A000203(p^k) = (p^(k+1)-1)/(p-1), so the conjecture is true if n is prime. - Vaclav Kotesovec, Dec 19 2024]

A002202 Values taken by totient function phi(m) (A000010).

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176
Offset: 1

Views

Author

Keywords

Comments

These are the numbers n such that for some m the multiplicative group mod m has order n.
Maier & Pomerance show that there are about x * exp(c (log log log x)^2)/log x members of this sequence up to x, with c = 0.81781465... (A234614); see the paper for details on making this precise. - Charles R Greathouse IV, Dec 28 2013
A264739(a(n)) = 1; a(n) occurs A058277(n) times in A007614. - Reinhard Zumkeller, Nov 26 2015
There are no odd numbers > 2 in the sequence and the even numbers that are not in the sequence are in A005277. - Bernard Schott, May 13 2020

References

  • J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002110, A005277, A007614, A007617 (complement).
Cf. A083533 (first differences), A264739.
Cf. A006093 (a subsequence).

Programs

  • Haskell
    import Data.List.Ordered (insertSet)
    a002202 n = a002202_list !! (n-1)
    a002202_list = f [1..] (tail a002110_list) [] where
       f (x:xs) ps'@(p:ps) us
         | x < p = f xs ps' $ insertSet (a000010' x) us
         | otherwise = vs ++ f xs ps ws
         where (vs, ws) = span (<= a000010' x) us
    -- Reinhard Zumkeller, Nov 22 2015
  • Maple
    with(numtheory); t1 := [seq(nops(invphi(n)), n=1..300)]; t2 := []: for n from 1 to 300 do if t1[n] <> 0 then t2 := [op(t2), n]; fi; od: t2;
    # second Maple program:
    q:= n-> is(numtheory[invphi](n)<>[]):
    select(q, [$1..176])[];  # Alois P. Heinz, Nov 13 2024
  • Mathematica
    phiQ[m_] := Select[Range[m+1, 2m*Product[(1-1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1 ] != {}; Select[Range[176], phiQ] (* Jean-François Alcover, May 23 2011, after Maxim Rytin *)
  • PARI
    lst(lim)=my(P=1,q,v);forprime(p=2,default(primelimit), if(eulerphi(P*=p)>=lim,q=p;break));v=vecsort(vector(P/q*lim\eulerphi(P/q),k,eulerphi(k)),,8);select(n->n<=lim,v) \\ Charles R Greathouse IV, Apr 16 2012
    
  • PARI
    select(istotient,vector(100,i,i)) \\ Charles R Greathouse IV, Dec 28 2012
    

A014197 Number of numbers m with Euler phi(m) = n.

Original entry on oeis.org

2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, 0, 0, 0, 0, 0, 2, 0, 10, 0, 2, 0, 6, 0, 0, 0, 6, 0, 0, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Carmichael conjectured that there are no 1's in this sequence. - Jud McCranie, Oct 10 2000
Number of cyclotomic polynomials of degree n. - T. D. Noe, Aug 15 2003
Let v == 0 (mod 24), w = v + 24, and v < k < q < w, where k and q are integer. It seems that, for most values of v, there is no b such that b = a(k) + a(q) and b > a(v) + a(w). The first case where b > a(v) + a(w) occurs at v = 888: b = a(896) + a(900) = 15 + 4, b > a(888) + a(912), or 19 > 8 + 7. The first case where v < n < w and a(n) > a(v) + a(w) occurs at v = 2232: a(2240) > a(2232) + a(2256), or 27 > 7 + 8. - Sergey Pavlov, Feb 05 2017
One elementary result relating to phi(m) is that if m is odd, then phi(m)=phi(2m) because 1 and 2 both have phi value 1 and phi is multiplicative. - Roderick MacPhee, Jun 03 2017

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B39, pp. 144-146.
  • Joe Roberts, Lure of The Integers, The Mathematical Association of America, 1992, entry 32, page 182.

Crossrefs

Cf. A000010, A002202, A032446 (bisection), A049283, A051894, A055506, A057635, A057826, A058277 (nonzero terms), A058341, A063439, A066412, A070243 (partial sums), A070633, A071386 (positions of odd terms), A071387, A071388 (positions of primes), A071389 (where prime(n) occurs for the first time), A082695, A097942 (positions of records), A097946, A120963, A134269, A219930, A280611, A280709, A280712, A296655 (positions of positive even terms), A305353, A305656, A319048, A322019.
For records see A131934.
Column 1 of array A320000.

Programs

  • GAP
    a := function(n)
    local S, T, R, max, i, k, r;
    S:=[];
    for i in DivisorsInt(n)+1 do
        if IsPrime(i)=true then
            S:=Concatenation(S,[i]);
        fi;
    od;
    T:=[];
    for k in [1..Size(S)] do
        T:=Concatenation(T,[S[k]/(S[k]-1)]);
    od;
    max := n*Product(T);
    R:=[];
    for r in [1..Int(max)] do
        if Phi(r)=n then
            R:=Concatenation(R,[r]);
        fi;
    od;
    return Size(R);
    end; # Miles Englezou, Oct 22 2024
  • Magma
    [#EulerPhiInverse(n): n in [1..100]]; // Marius A. Burtea, Sep 08 2019
    
  • Maple
    with(numtheory): A014197:=n-> nops(invphi(n)): seq(A014197(n), n=1..200);
  • Mathematica
    a[1] = 2; a[m_?OddQ] = 0; a[m_] := Module[{p, nmax, n, k}, p = Select[ Divisors[m]+1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; k = 0; While[n <= nmax, If[EulerPhi[n] == m, k++]; n++]; k]; Array[a, 92] (* Jean-François Alcover, Dec 09 2011, updated Apr 25 2016 *)
    With[{nn = 116}, Function[s, Function[t, Take[#, nn] &@ ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(3/2)] + 10]] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A014197(n,m=1) = { n==1 && return(1+(m<2)); my(p,q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0,valuation(q=n\d,p=d+1), A014197(q\p^i,p))))} \\ M. F. Hasler, Oct 05 2009
    
  • PARI
    a(n) = invphiNum(n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
    
  • Python
    from sympy import totient, divisors, isprime, prod
    def a(m):
        if m == 1: return 2
        if m % 2: return 0
        X = (x + 1 for x in divisors(m))
        nmax=m*prod(i/(i - 1) for i in X if isprime(i))
        n=m
        k=0
        while n<=nmax:
            if totient(n)==m:k+=1
            n+=1
        return k
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 18 2017, after Mathematica code
    

Formula

Dirichlet g.f.: Sum_{n>=1} a(n)*n^-s = zeta(s)*Product_(1+1/(p-1)^s-1/p^s). - Benoit Cloitre, Apr 12 2003
Limit_{n->infinity} (1/n) * Sum_{k=1..n} a(k) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707036... (see A082695). - Benoit Cloitre, Apr 12 2003
From Christopher J. Smyth, Jan 08 2017: (Start)
Euler transform = Product_{n>=1} (1-x^n)^(-a(n)) = g.f. of A120963.
Product_{n>=1} (1+x^n)^a(n)
= Product_{n>=1} ((1-x^(2n))/(1-x^n))^a(n)
= Product_{n>=1} (1-x^n)^(-A280712(n))
= Euler transform of A280712 = g.f. of A280611.
(End)
a(A000010(n)) = A066412(n). - Antti Karttunen, Jul 18 2017
From Antti Karttunen, Dec 04 2018: (Start)
a(A000079(n)) = A058321(n).
a(A000142(n)) = A055506(n).
a(A017545(n)) = A063667(n).
a(n) = Sum_{d|n} A008683(n/d)*A070633(d).
a(n) = A056239(A322310(n)).
(End)

A032447 Inverse function of phi( ).

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 10, 12, 7, 9, 14, 18, 15, 16, 20, 24, 30, 11, 22, 13, 21, 26, 28, 36, 42, 17, 32, 34, 40, 48, 60, 19, 27, 38, 54, 25, 33, 44, 50, 66, 23, 46, 35, 39, 45, 52, 56, 70, 72, 78, 84, 90, 29, 58, 31, 62, 51, 64, 68, 80, 96, 102, 120, 37, 57, 63, 74, 76, 108, 114, 126
Offset: 1

Views

Author

Ursula Gagelmann (gagelmann(AT)altavista.net)

Keywords

Comments

Arrange integers in order of increasing phi value; the phi values themselves form A007614.
Inverse of sequence A064275 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
In the array shown in the example section row no. n gives exactly the N values for which the cyclotomic polynomials cyclotomic(N,x) have degree A002202(n). - Wolfdieter Lang, Feb 19 2012.

Examples

			phi(1)=phi(2)=1, phi(3)=phi(4)=phi(6)=2, phi(5)=phi(8)=...=4, ...
From _Wolfdieter Lang_, Feb 19 2012: (Start)
Read as array a(n,m) with row length l(n):=A058277(v(n)) with v(n):= A002202(n), n>=1. a(n,m) = m-th element of the set {m from positive integers: phi(m)=v(n)} when read as an increasingly ordered list.
  l(n): 2, 3, 4, 4, 5, 2, 6, 6, 4, 5, ...
   n, v(n)\m 1  2  3  4  5  6  7  8  9  10 11  12  13  14
   1,  1:    1  2
   2,  2:    3  4  6
   3,  4:    5  8 10 12
   4,  6:    7  9 14 18
   5,  8:   15 16 20 24 30
   6, 10:   11 22
   7, 12:   13 21 26 28 36 42
   8, 16:   17 32 34 40 48 60
   9, 18:   19 27 38 54
  10, 20:   25 33 44 50 66
  ...
Row no. n=4: The cyclotomic polynomials cyclotomic(N,x) with values N = 7,9,14, and 18 have degree 6, and only these.
(End)
		

References

  • Sivaramakrishnan, The many facets of Euler's Totient, I. Nieuw Arch. Wisk. 4 (1986), 175-190.

Crossrefs

Programs

  • Haskell
    import Data.List.Ordered (insertBag)
    a032447 n = a032447_list !! (n-1)
    a032447_list = f [1..] a002110_list [] where
       f xs'@(x:xs) ps'@(p:ps) us
         | x < p = f xs ps' $ insertBag (a000010' x, x) us
         | otherwise = map snd vs ++ f xs' ps ws
         where (vs, ws) = span ((<= a000010' x) . fst) us
    -- Reinhard Zumkeller, Nov 22 2015
    
  • Mathematica
    Needs["CNT`"]; Flatten[Table[PhiInverse[n], {n, 40}]] (* T. D. Noe, Oct 15 2012 *)
    Take[Values@ PositionIndex@ Array[EulerPhi, 10^3], 15] // Flatten (* Michael De Vlieger, Dec 29 2017 *)
    SortBy[Table[{n,EulerPhi[n]},{n,150}],Last][[All,1]] (* Harvey P. Dale, Oct 11 2019 *)
  • PARI
    M = 9660; /* choose a term of A036913 */
    v = vector(M, n, [eulerphi(n),n] );
    v = vecsort(v, (x, y)-> if( x[1]-y[1]!=0, sign(x[1]-y[1]), sign(x[2]-y[2]) ) );
    P=eulerphi(M);
    v = select( x->(x[1]<=P), v );
    /* A007614 = vector(#v,n, v[n][1] ) */
    A032447 = vector(#v,n, v[n][2] )
    /* for (n=1,#v, print(n," ", A032447[n]) ); */ /* b-file */
    /* Joerg Arndt, Oct 06 2012 */
    
  • Perl
    use ntheory ":all"; my($n,$k,$i,@v)=(10000,1,0); push @v,inverse_totient($k++) while @v<$n; $#v=$n-1; say ++$i," $" for @v; # _Dana Jacobsen, Mar 04 2019

Extensions

Example corrected, more terms and program from Olivier Gérard, Feb 1999

A002181 Least number k such that phi(k) = m, where m runs through the values (A002202) taken by phi.

Original entry on oeis.org

1, 3, 5, 7, 15, 11, 13, 17, 19, 25, 23, 35, 29, 31, 51, 37, 41, 43, 69, 47, 65, 53, 81, 87, 59, 61, 85, 67, 71, 73, 79, 123, 83, 129, 89, 141, 97, 101, 103, 159, 107, 109, 121, 113, 177, 143, 127, 255, 131, 161, 137, 139, 213, 185, 149, 151, 157, 187, 163, 249, 167, 203, 173
Offset: 1

Views

Author

Keywords

Comments

Inverse of Euler totient function.
A051445 without the zeros. The values of m are in A002180.
According to Guy, the first even term is for 2m = 16842752 = 257*2^16. If there are only five Fermat primes, then terms will be even for 2m = 2^r for all r > 31. This was discussed in problem E3361. - T. D. Noe, Aug 14 2008

References

  • J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
  • R. K. Guy, Unsolved problems in number theory, B39.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{ep=EulerPhi[Range[1000]]},Flatten[Table[Position[ep,n,{1},1],{n,200}]]] (* Harvey P. Dale, Apr 10 2015 *)

Formula

a(n) = A061026(A002202(n)). - Flávio V. Fernandes, Oct 08 2023

Extensions

Offset and initial term corrected Oct 07 2007
Revised definition from T. D. Noe, Aug 14 2008

A007367 Numbers k such that phi(x) = k has exactly 3 solutions.

Original entry on oeis.org

2, 44, 56, 92, 104, 116, 140, 164, 204, 212, 260, 296, 332, 344, 356, 380, 392, 444, 452, 476, 524, 536, 564, 584, 588, 620, 632, 684, 692, 716, 744, 764, 776, 836, 860, 884, 932, 956, 980, 1004, 1016, 1112, 1124, 1136, 1172, 1196, 1284, 1292, 1304
Offset: 1

Views

Author

Keywords

Comments

From Torlach Rush, Jul 23 2018: (Start)
For known terms:
- The greatest common divisor of the three solutions is the distance of the middle solution from the least solution and is half the distance of the middle solution to the largest solution.
- If the number of distinct prime factors of k equals the number of solutions of k = phi(x), then the greatest common divisor of the solutions is the least solution divided by the number of solutions.
- Except for a(1), if the largest prime factor is the same for all solutions and is equal to the greatest common divisor of all solutions then the distance from a(n) to the least solution is gcd({k: phi(k) = a(n)}) + 2. (End)
By Ford's theorem on Euler totient function, this sequence is infinite. - Jianing Song, Jul 18 2018

Examples

			phi(69) = phi(92) = phi(138) = 44, so 44 is a term.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 44, p. 17, Ellipses, Paris, 2008.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of solutions: A007617 (0), A007366 (2), this sequence (3), A060667 (4), A060668 (5), A060669 (6), A060670 (7), A060671 (8), A060672 (9), A060673 (10), A060674 (11), A060675 (12).

Programs

  • Haskell
    a007367 n = a007367_list !! (n-1)
    a007367_list = map fst $
                   filter ((== 3) . snd) $ zip a002202_list a058277_list
    -- Reinhard Zumkeller, Nov 25 2015
    
  • Mathematica
    a = Table[ 0, {1500} ]; Do[ p = EulerPhi[ n ]; If[ p < 1501, a[ [ p ] ]++ ], {n, 1, 1500} ]; Select[ Range[ 1500 ], a[ [ # ] ] == 3 & ]
    Take[Select[Tally[EulerPhi[Range[50000]]],#[[2]]==3&][[All,1]],50]//Sort (* Harvey P. Dale, Apr 02 2018 *)
  • PARI
    is(k) = invphiNum(k) == 3 \\ Amiram Eldar, Nov 17 2024, using Max Alekseyev's invphi.gp

A007614 All values attained by the phi(n) function, in ascending order.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 8, 8, 8, 8, 8, 10, 10, 12, 12, 12, 12, 12, 12, 16, 16, 16, 16, 16, 16, 18, 18, 18, 18, 20, 20, 20, 20, 20, 22, 22, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 28, 28, 30, 30, 32, 32, 32, 32, 32, 32, 32, 36, 36, 36, 36, 36, 36, 36, 36
Offset: 1

Views

Author

Keywords

Comments

Write down phi(1), phi(2), phi(3), ..., then sort this list. Of course the list before sorting is simply sequence A000010.
To ensure that all terms are found, the values of phi(n) should be computed for all n up to a primorial p# -- which are the local minima of the phi function. Selecting and sorting the values of phi(n) <= phi(p#) produces the terms of this sequence. - T. D. Noe, Mar 22 2011
A002202(n) occurs A058277(n) times. - Reinhard Zumkeller, Nov 22 2015

Crossrefs

Corresponding values of n are given by A032447.
Cf. A000010. A002110, A002202, A058277 (run lengths).

Programs

  • Haskell
    import Data.List.Ordered (insertBag)
    a007614 n = a007614_list !! (n-1)
    a007614_list = f [1..] a002110_list [] where
       f xs'@(x:xs) ps'@(p:ps) us
         | x < p = f xs ps' $ insertBag (a000010' x) us
         | otherwise = vs ++ f xs' ps ws
         where (vs, ws) = span (<= a000010' x) us
    -- Reinhard Zumkeller, Nov 22 2015
  • Mathematica
    Cases[Sort[Table[EulerPhi[n],{n,1,36^2}]], n_ /; n<=36 ]  (* Jean-François Alcover, Mar 22 2011 *)
    A007614[m_]:=Select[Sort[Table[EulerPhi[n],{n,Prime[m]}]],#≤m&]; A007614[1000] (* Zak Seidov, Mar 22 2011 *)
    primorial = Times @@ Prime[Range[4]]; phi = EulerPhi[primorial]; Sort[Select[EulerPhi[Range[primorial]], # <= phi &]] (* T. D. Noe, Mar 22 2011 *)
  • PARI
    (See A032447).
    
  • PARI
    lista(nmax) = {my(m); for(n = 1, nmax, m = invphiNum(n); for(i = 1, m, print1(n, ", ")));} \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
    

A097942 Highly totient numbers: each number k on this list has more solutions to the equation phi(x) = k than any preceding k (where phi is Euler's totient function, A000010).

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 48, 72, 144, 240, 432, 480, 576, 720, 1152, 1440, 2880, 4320, 5760, 8640, 11520, 17280, 25920, 30240, 34560, 40320, 51840, 60480, 69120, 80640, 103680, 120960, 161280, 181440, 207360, 241920, 362880, 483840, 725760, 967680
Offset: 1

Views

Author

Alonso del Arte, Sep 05 2004

Keywords

Comments

If you inspect PhiAnsYldList after running the Mathematica program below, the zeros with even-numbered indices should correspond to the nontotients (A005277).
Where records occur in A014197. - T. D. Noe, Jun 13 2006
Cf. A131934.

Examples

			a(4) = 8 since phi(x) = 8 has the solutions {15, 16, 20, 24, 30}, one more solution than a(3) = 4 for which phi(x) = 4 has solutions {5, 8, 10, 12}.
		

Crossrefs

A subsequence of A007374.

Programs

  • Maple
    HighlyTotientNumbers := proc(n) # n > 1 is search maximum
    local L, m, i, r; L := NULL; m := 0;
    for i from 1 to n do
      r := nops(numtheory[invphi](i));
      if r > m then L := L,[i,r]; m := r fi
    od; [L] end:
    A097942_list := n -> seq(s[1], s = HighlyTotientNumbers(n));
    A097942_list(500); # Peter Luschny, Sep 01 2012
  • Mathematica
    searchMax = 2000; phiAnsYldList = Table[0, {searchMax}]; Do[phiAns = EulerPhi[m]; If[phiAns <= searchMax, phiAnsYldList[[phiAns]]++ ], {m, 1, searchMax^2}]; highlyTotientList = {1}; currHigh = 1; Do[If[phiAnsYldList[[n]] > phiAnsYldList[[currHigh]], highlyTotientList = {highlyTotientList, n}; currHigh = n], {n, 2, searchMax}]; Flatten[highlyTotientList]
  • PARI
    { A097942_list(n) = local(L, m, i, r);
      m = 0;
      for(i=1, n,
    \\ from Max Alekseyev, http://home.gwu.edu/~maxal/gpscripts/
       r = numinvphi(i);
       if(r > m, print1(i,", "); m = r) );
    } \\ Peter Luschny, Sep 01 2012
  • Sage
    def HighlyTotientNumbers(n) : # n > 1 is search maximum.
        R = {}
        for i in (1..n^2) :
            r = euler_phi(i)
            if r <= n :
                R[r] = R[r] + 1 if r in R else 1
        # print R.keys()   # A002202
        # print R.values() # A058277
        P = []; m = 1
        for l in sorted(R.keys()) :
            if R[l] > m : m = R[l]; P.append((l,m))
        # print [l[0] for l in P] # A097942
        # print [l[1] for l in P] # A131934
        return P
    A097942_list = lambda n: [s[0] for s in HighlyTotientNumbers(n)]
    A097942_list(500) # Peter Luschny, Sep 01 2012
    

Extensions

Edited and extended by Robert G. Wilson v, Sep 07 2004

A071386 Numbers k such that the cardinality of the set of solutions to phi(x) = k is odd.

Original entry on oeis.org

2, 8, 20, 32, 40, 44, 48, 56, 60, 72, 92, 96, 104, 108, 116, 120, 128, 132, 140, 144, 156, 164, 192, 204, 212, 216, 220, 240, 252, 260, 272, 276, 296, 300, 332, 344, 356, 360, 368, 380, 384, 392, 396, 400, 416, 420, 440, 444, 452, 456, 476, 480, 500, 504, 512
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Examples

			k = 40 is a term: InvPhi(40) = {41,55,75,82,88,100,110,132,150} has 9 entries.
		

Crossrefs

Programs

Formula

{ k : Card(InvPhi(k)) mod 2 = 1 }.

A085713 Consider numbers k such that phi(x) = k has exactly 3 solutions and they are (3*p, 4*p, 6*p) where p is 1 or a prime. Sequence gives values of p.

Original entry on oeis.org

1, 23, 29, 47, 53, 59, 71, 83, 103, 107, 131, 149, 167, 173, 179, 191, 197, 223, 227, 239, 263, 269, 283, 293, 311, 317, 347, 359, 373, 383, 389, 419, 431, 443, 467, 479, 491, 503, 509, 557, 563, 569, 587, 599, 643, 647, 653, 659, 677, 683, 709, 719
Offset: 1

Views

Author

Alford Arnold, Jul 19 2003

Keywords

Comments

Prime numbers in this sequence are called prime replicators of 2, by Stolarski and Greenbaum, (3, 4, 6) being the solutions of phi(x)=2. - Michel Marcus, Oct 20 2012
Prime numbers in this sequence when multiplied by 2 equal k + 2. For example, 83 * 2 = 164 + 2. - Torlach Rush, Jun 16 2018

Examples

			83 is a term because the three solutions (249,332,498) to phi(x) = 164 can be written as (3*83, 4*83, 6*83).
		

Crossrefs

Programs

  • Haskell
    import Data.List.Ordered (insertBag)
    import Data.List (groupBy); import Data.Function (on)
    a085713 n = a085713_list !! (n-1)
    a085713_list = 1 : r yx3ss where
       r (ps:pss) | a010051' cd == 1 &&
                    map (flip div cd) ps == [3, 4, 6] = cd : r pss
                  | otherwise = r pss  where cd = foldl1 gcd ps
       yx3ss = filter ((== 3) . length) $
           map (map snd) $ groupBy ((==) `on` fst) $
           f [1..] a002110_list []
           where f is'@(i:is) ps'@(p:ps) yxs
                  | i < p = f is ps' $ insertBag (a000010' i, i) yxs
                  | otherwise = yxs' ++ f is' ps yxs''
                  where (yxs', yxs'') = span ((<= a000010' i) . fst) yxs
    -- Reinhard Zumkeller, Nov 25 2015
    
  • Mathematica
    t = Table[ EulerPhi[n], {n, 1, 5000}]; u = Union[ Select[t, Count[t, # ] == 3 &]]; a = {}; Do[k = 1; While[ EulerPhi[3k] != u[[n]], k++ ]; AppendTo[a, k], {n, 1, 60}]; Sort[a]
  • PARI
    is(p) = if(p > 1 && !isprime(p), 0, invphi(eulerphi(3*p)) == [3*p, 4*p, 6*p]); \\ Amiram Eldar, Nov 19 2024, using Max Alekseyev's invphi.gp

Extensions

Edited and extended by Robert G. Wilson v, Jul 19 2003
Nonprimes 343=7^3 and 361=19^2 deleted by Reinhard Zumkeller, Nov 25 2015
Showing 1-10 of 22 results. Next