cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A014197 Number of numbers m with Euler phi(m) = n.

Original entry on oeis.org

2, 3, 0, 4, 0, 4, 0, 5, 0, 2, 0, 6, 0, 0, 0, 6, 0, 4, 0, 5, 0, 2, 0, 10, 0, 0, 0, 2, 0, 2, 0, 7, 0, 0, 0, 8, 0, 0, 0, 9, 0, 4, 0, 3, 0, 2, 0, 11, 0, 0, 0, 2, 0, 2, 0, 3, 0, 2, 0, 9, 0, 0, 0, 8, 0, 2, 0, 0, 0, 2, 0, 17, 0, 0, 0, 0, 0, 2, 0, 10, 0, 2, 0, 6, 0, 0, 0, 6, 0, 0, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Carmichael conjectured that there are no 1's in this sequence. - Jud McCranie, Oct 10 2000
Number of cyclotomic polynomials of degree n. - T. D. Noe, Aug 15 2003
Let v == 0 (mod 24), w = v + 24, and v < k < q < w, where k and q are integer. It seems that, for most values of v, there is no b such that b = a(k) + a(q) and b > a(v) + a(w). The first case where b > a(v) + a(w) occurs at v = 888: b = a(896) + a(900) = 15 + 4, b > a(888) + a(912), or 19 > 8 + 7. The first case where v < n < w and a(n) > a(v) + a(w) occurs at v = 2232: a(2240) > a(2232) + a(2256), or 27 > 7 + 8. - Sergey Pavlov, Feb 05 2017
One elementary result relating to phi(m) is that if m is odd, then phi(m)=phi(2m) because 1 and 2 both have phi value 1 and phi is multiplicative. - Roderick MacPhee, Jun 03 2017

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B39, pp. 144-146.
  • Joe Roberts, Lure of The Integers, The Mathematical Association of America, 1992, entry 32, page 182.

Crossrefs

Cf. A000010, A002202, A032446 (bisection), A049283, A051894, A055506, A057635, A057826, A058277 (nonzero terms), A058341, A063439, A066412, A070243 (partial sums), A070633, A071386 (positions of odd terms), A071387, A071388 (positions of primes), A071389 (where prime(n) occurs for the first time), A082695, A097942 (positions of records), A097946, A120963, A134269, A219930, A280611, A280709, A280712, A296655 (positions of positive even terms), A305353, A305656, A319048, A322019.
For records see A131934.
Column 1 of array A320000.

Programs

  • GAP
    a := function(n)
    local S, T, R, max, i, k, r;
    S:=[];
    for i in DivisorsInt(n)+1 do
        if IsPrime(i)=true then
            S:=Concatenation(S,[i]);
        fi;
    od;
    T:=[];
    for k in [1..Size(S)] do
        T:=Concatenation(T,[S[k]/(S[k]-1)]);
    od;
    max := n*Product(T);
    R:=[];
    for r in [1..Int(max)] do
        if Phi(r)=n then
            R:=Concatenation(R,[r]);
        fi;
    od;
    return Size(R);
    end; # Miles Englezou, Oct 22 2024
  • Magma
    [#EulerPhiInverse(n): n in [1..100]]; // Marius A. Burtea, Sep 08 2019
    
  • Maple
    with(numtheory): A014197:=n-> nops(invphi(n)): seq(A014197(n), n=1..200);
  • Mathematica
    a[1] = 2; a[m_?OddQ] = 0; a[m_] := Module[{p, nmax, n, k}, p = Select[ Divisors[m]+1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; k = 0; While[n <= nmax, If[EulerPhi[n] == m, k++]; n++]; k]; Array[a, 92] (* Jean-François Alcover, Dec 09 2011, updated Apr 25 2016 *)
    With[{nn = 116}, Function[s, Function[t, Take[#, nn] &@ ReplacePart[t, Map[# -> Length@ Lookup[s, #] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, Floor[nn^(3/2)] + 10]] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A014197(n,m=1) = { n==1 && return(1+(m<2)); my(p,q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0,valuation(q=n\d,p=d+1), A014197(q\p^i,p))))} \\ M. F. Hasler, Oct 05 2009
    
  • PARI
    a(n) = invphiNum(n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
    
  • Python
    from sympy import totient, divisors, isprime, prod
    def a(m):
        if m == 1: return 2
        if m % 2: return 0
        X = (x + 1 for x in divisors(m))
        nmax=m*prod(i/(i - 1) for i in X if isprime(i))
        n=m
        k=0
        while n<=nmax:
            if totient(n)==m:k+=1
            n+=1
        return k
    print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 18 2017, after Mathematica code
    

Formula

Dirichlet g.f.: Sum_{n>=1} a(n)*n^-s = zeta(s)*Product_(1+1/(p-1)^s-1/p^s). - Benoit Cloitre, Apr 12 2003
Limit_{n->infinity} (1/n) * Sum_{k=1..n} a(k) = zeta(2)*zeta(3)/zeta(6) = 1.94359643682075920505707036... (see A082695). - Benoit Cloitre, Apr 12 2003
From Christopher J. Smyth, Jan 08 2017: (Start)
Euler transform = Product_{n>=1} (1-x^n)^(-a(n)) = g.f. of A120963.
Product_{n>=1} (1+x^n)^a(n)
= Product_{n>=1} ((1-x^(2n))/(1-x^n))^a(n)
= Product_{n>=1} (1-x^n)^(-A280712(n))
= Euler transform of A280712 = g.f. of A280611.
(End)
a(A000010(n)) = A066412(n). - Antti Karttunen, Jul 18 2017
From Antti Karttunen, Dec 04 2018: (Start)
a(A000079(n)) = A058321(n).
a(A000142(n)) = A055506(n).
a(A017545(n)) = A063667(n).
a(n) = Sum_{d|n} A008683(n/d)*A070633(d).
a(n) = A056239(A322310(n)).
(End)

A071387 Smallest number k for which the set of solutions to phi(x) = k has 2n-1 entries.

Original entry on oeis.org

0, 2, 8, 32, 40, 48, 396, 704, 72, 216, 144, 1056, 360, 384, 1320, 240, 9000, 7128, 480, 1296, 15936, 3072, 864, 7344, 720, 4992, 2016, 6000, 4752, 3024, 9984, 1920, 7560, 22848, 29160, 3360, 13248, 27720, 9072, 9360, 4032, 4800, 16896, 3840, 9504, 23520, 5040
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Examples

			For n = 7: 2n-1 = 13, a(7) = Min(InvPhi(13)) = Min({396,400,420,552,560,660}) = 396.
		

Crossrefs

Programs

  • PARI
    a(n) = {if (n==1, return (0)); my(k=1); while(#invphi(k) != 2*n-1, k++); k;} \\ Michel Marcus, May 13 2020

Formula

a(n) = Min({x; Card(InvPhi(x)) = 2n-1}); a(1)=0 because of Carmichael conjecture.

Extensions

a(12)-a(47) from Donovan Johnson, Jul 27 2011

A071388 Numbers k such that the cardinality of the set of solutions to phi(x) = k is a prime.

Original entry on oeis.org

1, 2, 8, 10, 20, 22, 28, 30, 32, 44, 46, 48, 52, 54, 56, 58, 66, 70, 72, 78, 82, 92, 96, 102, 104, 106, 110, 116, 120, 126, 130, 132, 136, 138, 140, 148, 150, 156, 164, 166, 172, 178, 190, 196, 198, 204, 210, 212, 216, 220, 222, 226, 228, 238, 240, 250, 260, 262
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Comments

All terms except 1 are even. - Robert Israel, Mar 29 2020

Examples

			InvPhi(48) = {65,104,105,112,130,140,144,156,168,180,210} has 11 terms, so 48 is a term.
		

Crossrefs

Programs

  • Maple
    filter:= n -> isprime(nops(numtheory:-invphi(n))):
    select(filter, [$1..400]); # Robert Israel, Mar 29 2020
  • PARI
    is(k) = isprime(invphiNum(k)); \\ Amiram Eldar, Nov 15 2024, using Max Alekseyev's invphi.gp

A071389 Least number m such that cardinality of InvPhi(m) = prime(n).

Original entry on oeis.org

1, 2, 8, 32, 48, 396, 72, 216, 1056, 1320, 240, 480, 15936, 3072, 7344, 2016, 3024, 9984, 22848, 3360, 13248, 9360, 4800, 9504, 9216, 23328, 7680, 53280, 12480, 29376, 91200, 159744, 22464, 228960, 29952, 179200, 47040, 68544, 15840, 20736, 61440
Offset: 1

Views

Author

Labos Elemer, May 23 2002

Keywords

Examples

			For n = 11: prime(11) = 31, Card(InvPhi(x)) = 31 for {240, 672, ...}; the smallest is 240 = a(11).
		

Crossrefs

Programs

  • PARI
    lista(len) = {my(p = prime(len), v = vector(p, i, -!isprime(i)), c = 0, k = 1, i); while(c < len, i = invphiNum(k); if(i > 0 && i <= p && v[i] == 0, c++; v[i] = k); k++); select(x -> x > 0, v);} \\ Amiram Eldar, Nov 11 2024, using Max Alekseyev's invphi.gp

Formula

a(n) = Min{x; Card(InvPhi(x)) = prime(n), n-th prime}

Extensions

4 more terms from Emeric Deutsch, Jul 25 2005
More terms from Max Alekseyev, Apr 24 2010

A296655 Numbers k such that phi(x) = k has a positive even number of solutions.

Original entry on oeis.org

1, 4, 6, 10, 12, 16, 18, 22, 24, 28, 30, 36, 42, 46, 52, 54, 58, 64, 66, 70, 78, 80, 82, 84, 88, 100, 102, 106, 110, 112, 126, 130, 136, 138, 148, 150, 160, 162, 166, 168, 172, 176, 178, 180, 184, 190, 196, 198, 200, 208, 210, 222, 224, 226, 228, 232, 238, 250
Offset: 1

Views

Author

Torlach Rush, Dec 17 2017

Keywords

Comments

When the number of solutions is 2, the sum of Sum_{d|x} d*mu(d) is always 0.
A007366 is contained in this sequence because it selects terms with the smallest even number of inverses.

Examples

			1 is a term because phi(1) has two inverses, 1, and 2.
6 is a term because phi(6) has four inverses, 7, 9, 14, and 18.
10 is a term because phi(10) has two inverses, 11, and 22.
18 is a term because phi(18) has four inverses, 19, 27, 38, 54.
348 is a term because phi(348) has six inverses, 349, 413, 531, 698, 826, and 1062.
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 1500}, TakeWhile[Union@ Select[KeyValueMap[{#1, Length@ #2} &, PositionIndex@ Array[EulerPhi, nn]], EvenQ@ Last@ # &][[All, 1]], # <= nn/6 &] ] (* Michael De Vlieger, Dec 20 2017 *)

Formula

0 = card({phi^-1(a(n))}) mod 2.

Extensions

Corrected and extended by Rémy Sigrist, Dec 19 2017
Showing 1-5 of 5 results.