cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058297 Continued fraction for Wallis' number (A007493).

Original entry on oeis.org

2, 10, 1, 1, 2, 1, 3, 1, 1, 12, 3, 5, 1, 1, 2, 1, 6, 1, 11, 4, 42, 1, 2, 1, 1, 1, 1, 1, 2, 1, 16, 1, 1, 1, 1, 6, 2, 5, 22, 6, 31, 2, 1, 4, 17, 2, 1, 5, 2, 4, 5, 2, 74, 45, 1, 24, 3, 1, 13, 1, 18, 2, 8, 1, 1, 5, 2, 1, 1, 2, 10, 1, 6, 6, 1, 1, 7, 21, 1, 1, 2, 2, 8, 3, 2, 2, 4, 9, 7, 4, 106, 3, 2, 1, 3, 2
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

The real solution to the equation x^3 - 2x - 5 = 0.

Examples

			2.09455148154232659148238654... = 2 + 1/(10 + 1/(1 + 1/(1 + 1/(2 + ...))))
		

References

  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 27.

Crossrefs

Cf. A007493.

Programs

  • Mathematica
    ContinuedFraction[ 1/3*(135/2 - (3*Sqrt[1929])/2)^(1/3) + (1/2*(45 + Sqrt[1929]))^(1/3) / 3^(2/3), 100]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=NULL; p=x^3 - 2*x - 5; rs=polroots(p); r=real(rs[1]); c=contfrac(r); for (n=1, 20001, write("b058297.txt", n-1, " ", c[n])); } \\ Harry J. Smith, May 03 2009
    
  • PARI
    contfrac(polrootsreal(x^3-2*x-5)[1]) \\ Charles R Greathouse IV, Apr 14 2014