A058383 Primes of form 1+(2^a)*(3^b), a>0, b>0.
7, 13, 19, 37, 73, 97, 109, 163, 193, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 139969, 147457, 209953, 331777, 472393, 629857, 746497, 786433, 839809, 995329, 1179649, 1492993
Offset: 1
Keywords
Links
- Ray Chandler, Table of n, a(n) for n = 1..8378 (terms < 10^1000, first 1000 terms from T. D. Noe)
Programs
-
Maple
N:= 10^10: # to get all terms <= N+1 sort(select(isprime, [seq(seq(1+2^a*3^b, a=1..ilog2(N/3^b)), b=1..floor(log[3](N)))])); # Robert Israel, Mar 02 2018
-
Mathematica
Do[If[Take[FactorInteger[EulerPhi[2n + 1]][[ -1]],1] == {3} && PrimeQ[2n + 1], Print[2n + 1]], {n, 1, 10000}] (* Artur Jasinski, Dec 13 2006 *) mx = 1500000; s = Sort@ Flatten@ Table[1 + 2^j*3^k, {j, Log[2, mx]}, {k, Log[3, mx/2^j]}]; Select[s, PrimeQ] (* Robert G. Wilson v, Sep 28 2012 *) Select[Prime[Range[114000]],FactorInteger[#-1][[All,1]]=={2,3}&] (* Harvey P. Dale, Apr 13 2019 *)
Formula
Primes of the form 1 + A033845(n).
Comments