cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058383 Primes of form 1+(2^a)*(3^b), a>0, b>0.

Original entry on oeis.org

7, 13, 19, 37, 73, 97, 109, 163, 193, 433, 487, 577, 769, 1153, 1297, 1459, 2593, 2917, 3457, 3889, 10369, 12289, 17497, 18433, 39367, 52489, 139969, 147457, 209953, 331777, 472393, 629857, 746497, 786433, 839809, 995329, 1179649, 1492993
Offset: 1

Views

Author

Labos Elemer, Dec 20 2000

Keywords

Comments

Prime numbers n such that cos(2*Pi/n) is an algebraic number of a 3-smooth degree, but not a 2-smooth degree. - Artur Jasinski, Dec 13 2006
From Antonio M. Oller-Marcén, Sep 24 2009: (Start)
In this case gcd(a,b) is a power of 2.
A regular polygon of n sides is constructible by paper folding if and only if n=2^r3^sp_1...p_t with p_i being distinct primes of this kind. (End)
Primes in A005109 but not in A092506. - R. J. Mathar, Sep 28 2012
Conjecture: these are the only solutions >=7 to the equation A000010(x) + A000010(x-1) = floor((4*x-3)/3). - Benoit Cloitre, Mar 02 2018
These are also called Pierpont primes. - Harvey P. Dale, Apr 13 2019

Crossrefs

Programs

  • Maple
    N:= 10^10: # to get all terms <= N+1
    sort(select(isprime, [seq(seq(1+2^a*3^b, a=1..ilog2(N/3^b)), b=1..floor(log[3](N)))])); # Robert Israel, Mar 02 2018
  • Mathematica
    Do[If[Take[FactorInteger[EulerPhi[2n + 1]][[ -1]],1] == {3} && PrimeQ[2n + 1], Print[2n + 1]], {n, 1, 10000}] (* Artur Jasinski, Dec 13 2006 *)
    mx = 1500000; s = Sort@ Flatten@ Table[1 + 2^j*3^k, {j, Log[2, mx]}, {k, Log[3, mx/2^j]}]; Select[s, PrimeQ] (* Robert G. Wilson v, Sep 28 2012 *)
    Select[Prime[Range[114000]],FactorInteger[#-1][[All,1]]=={2,3}&] (* Harvey P. Dale, Apr 13 2019 *)

Formula

Primes of the form 1 + A033845(n).