cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A054534 Square array giving Ramanujan sum T(n,k) = c_k(n) = Sum_{m=1..k, (m,k)=1} exp(2 Pi i m n / k), read by antidiagonals upwards (n >= 1, k >= 1).

Original entry on oeis.org

1, 1, -1, 1, 1, -1, 1, -1, -1, 0, 1, 1, 2, -2, -1, 1, -1, -1, 0, -1, 1, 1, 1, -1, 2, -1, -1, -1, 1, -1, 2, 0, -1, -2, -1, 0, 1, 1, -1, -2, 4, -1, -1, 0, 0, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, 1, 1, 2, 2, -1, 2, -1, -4, -3, -1, -1, 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, 1, 1, -1, -2, -1, -1, 6, 0, 0, -1, -1, 2, -1, 1, -1, 2, 0, 4, -2, -1, 0, -3, -4, -1, 0, -1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Apr 09 2000

Keywords

Comments

The Ramanujan sum is also known as the von Sterneck arithmetic function. Robert Daublebsky von Sterneck introduced it around 1900. - Petros Hadjicostas, Jul 20 2019
T(n, k) = c_k(n) is the sum of the n-th powers of the k-th primitive roots of unity. - Petros Hadjicostas, Jul 27 2019

Examples

			Array T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  1, -1, -1,  0, -1,  1, -1,  0,  0,  1, -1, ...
  1,  1, -1, -2, -1, -1, -1,  0,  0, -1, -1, ...
  1, -1,  2,  0, -1, -2, -1,  0, -3,  1, -1, ...
  1,  1, -1,  2, -1, -1, -1, -4,  0, -1, -1, ...
  1, -1, -1,  0,  4,  1, -1,  0,  0, -4, -1, ...
  1,  1,  2, -2, -1,  2, -1,  0, -3, -1, -1, ...
  1, -1, -1,  0, -1,  1,  6,  0,  0,  1, -1, ...
  ...
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, page 160.
  • H. Rademacher, Collected Papers of Hans Rademacher, vol. II, MIT Press, 1974, p. 435.
  • S. Ramanujan, On Certain Trigonometrical Sums and their Applications in the Theory of Numbers, pp. 179-199 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea Publishing 2000.
  • R. D. von Sterneck, Ein Analogon zur additiven Zahlentheorie, Sitzungsber. Acad. Wiss. Sapientiae Math.-Naturwiss. Kl. 111 (1902), 1567-1601 (Abt. IIa).

Crossrefs

Programs

  • Mathematica
    nmax = 14; mu[n_Integer] = MoebiusMu[n]; mu[] = 0; t[n, k_] := Total[ #*mu[k/#]& /@ Divisors[n]]; Flatten[ Table[ t[n-k+1, k], {n, 1, nmax}, {k, 1, n}]] (* Jean-François Alcover, Nov 14 2011, after Pari *)
    TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 11}]] (* to print a table like the one in the example - Petros Hadjicostas, Jul 27 2019 *)
  • PARI
    {T(n, k) = if( n<1 || k<1, 0, sumdiv( n, d, if( k%d==0, d * moebius(k / d))))} /* Michael Somos, Dec 05 2002 */
    
  • PARI
    {T(n, k) = if( n<1 || k<1, 0, polsym( polcyclo( k), n) [n + 1])} /* Michael Somos, Mar 21 2011 */
    
  • PARI
    /*To get an array like in the example above using Michael Somos' programs:*/
    {for (n=1, 20, for (k=1, 40, print1(T(n,k), ","); ); print(); ); } /* Petros Hadjicostas, Jul 27 2019 */

Formula

T(n, 1) = c_1(n) = 1. T(n, 2) = c_2(n) = A033999(n). T(n, 3) = c_3(n) = A099837(n) if n>1. T(n, 4) = c_4(n) = A176742(n) if n>1. T(n, 6) = c_6(n) = A100051(n) if n>1. - Michael Somos, Mar 21 2011
T(1, n) = c_n(1) = A008683(n). T(2, n) = c_n(2) = A086831(n). T(3, n) = c_n(3) = A085097(n). T(4, n) = c_n(4) = A085384(n). T(5, n) = c_n(5) = A085639(n). T(6, n) = c_n(6) = A085906(n). - Michael Somos, Mar 21 2011
T(n, n) = T(k * n, n) = A000010(n), T(n, 2*n) = -A062570(n). - Michael Somos, Mar 21 2011
Lambert series and a consequence: Sum_{k >= 1} c_k(n) * z^k / (1 - z^k) = Sum_{s|n} s * z^s and -Sum_{k >= 1} (c_k(n) / k) * log(1 - z^k) = Sum_{s|n} z^s for |z| < 1 (using the principal value of the logarithm). - Petros Hadjicostas, Aug 15 2019

A376349 Number of isomorphism classes k of groups G of order p*2^n when G contains a unique Sylow p subgroup and the maximal 2^m dividing p-1 is such that 2^m >= 2^n.

Original entry on oeis.org

1, 2, 5, 15, 54, 247, 1684, 21820, 1118964
Offset: 0

Views

Author

Miles Englezou, Sep 19 2024

Keywords

Comments

A Sylow p subgroup is a subgroup of order p^r that necessarily exists when r is a maximal power of p. It is not necessarily unique, but when it is unique it is normal in G.
The condition that G of order p*2^n contains a unique Sylow p subgroup places an upper bound on the number of isomorphism classes of G; it is equivalent to stating that the minimal 2^r such that 2^r == 1 (mod p) be such that 2^r > 2^n. The condition that the maximal 2^m dividing p-1, i.e. for p == 1 (mod 2^m), is such that 2^m >= 2^n ensures a lower bound which is equal to the upper bound. See the Miles Englezou link for a proof.
If we relax the two conditions and just consider an arbitrary odd prime p and the number of isomorphism classes for |G| = p*2^n, it is likely that the set of such numbers is unique to p. Since every odd prime has a minimal 2^r such that 2^r == 1 (mod p) (a consequence of Fermat's little theorem), when 2^r = 2^n for |G| = p*2^n, the number of isomorphism classes will differ from a(n) due to the existence of groups where the Sylow p subgroup is not unique.

Examples

			a(2) = 5 since D_(p*2^2), C_(p*2^2), C_(p*2^1) x C_2, and two semidirect products C_p : C_4 are all the groups of order p*2^2 for p satisfying the two conditions.
Table showing minimal 2^r and maximal 2^m (as defined in the Comments) for some primes:
---------------------------------------------------------------------------
p |      Minimal 2^r == 1 (mod p)       |   Maximal 2^m, p == 1 (mod 2^m)  |
---------------------------------------------------------------------------
2 |             2^0  = 1                |              2^0 = 1             |
3 |             2^2  = 4                |              2^1 = 2             |
5 |             2^4  = 16               |              2^2 = 4             |
7 |             2^3  = 8                |              2^1 = 2             |
11|             2^10 = 1024             |              2^1 = 2             |
13|             2^12 = 4096             |              2^2 = 4             |
17|             2^8  = 256              |              2^4 = 16            |
19|             2^18 = 262144           |              2^1 = 2             |
23|             2^11 = 2048             |              2^1 = 2             |
29|             2^28 = 268435456        |              2^2 = 4             |
31|             2^5  = 32               |              2^1 = 2             |
37|             2^36 = 68719476736      |              2^2 = 4             |
---------------------------------------------------------------------------
Table of primes satisfying 2^r > 2^n, and 2^m >= 2^n:
-------------------------------------------------------------------------------
   2^n   |                          primes                           |   a(n)  |
-------------------------------------------------------------------------------
2^0 = 1  |  all primes                                    = A000040  | 1       |
2^1 = 2  |  all primes > 2                                = A065091  | 2       |
2^2 = 4  |  5, 13, 17, 29, 37, 41, 53, ...                = A002144  | 5       |
2^3 = 8  |  17, 41, 73, 89, 97, 113, 137, ...             = A007519  | 15      |
2^4 = 16 |  17, 97, 113, 193, 241, 257, 337 ...           = A094407  | 54      |
2^5 = 32 |  97, 193, 257, 353, 449, 577, 641, ...         = A133870  | 247     |
2^6 = 64 |  193, 257, 449, 577, 641, 769, 1153, ...       = A142925  | 1684    |
2^7 = 128|  257, 641, 769, 1153, 1409, 2689, 3329, ...    = A208177  | 21820   |
2^8 = 256|  257, 769, 3329, 7937, 9473, 14081, 14593 ...  = A105131  | 1118964 |
-------------------------------------------------------------------------------
		

Crossrefs

Programs

  • GAP
    S:=[];
    for i in [0..8] do
        n:=7681*2^i; # 7681 is an appropriate prime for reproducing up to a(8)
        S:=Concatenation(S,[NrSmallGroups(n)]);
    od;
    Print(S);

Formula

a(n) = A000001(p*2^(n)) for every p satisfying the two conditions mentioned in Comments.
Showing 1-2 of 2 results.