A058397 Row sums of partition triangle A026820.
1, 3, 6, 13, 22, 42, 66, 112, 172, 270, 397, 602, 858, 1245, 1748, 2464, 3381, 4671, 6302, 8537, 11372, 15147, 19914, 26201, 34057, 44250, 56986, 73277, 93497, 119161, 150809, 190590, 239496, 300388, 374912, 467135, 579394, 717384, 884813
Offset: 1
Keywords
Programs
-
Maple
seq(add(combinat:-numbpart(n,k),k=0..n),n=1..39); # Peter Luschny, Aug 03 2015
-
Mathematica
T[n_, k_] := T[n, k] = If[n==0 || k==1, 1, T[n, k-1] + If[k>n, 0, T[n-k, k] ]]; a[n_] := Sum[T[n, k], {k, 1, n}]; Array[a,39] (* Jean-François Alcover, Jun 03 2019, after Alois P. Heinz in A026820 *)
-
PARI
a(n)=if(n<1,0,polcoeff(sum(k=1,n,1/prod(i=1,k,(1-x^i)),x*O(x^n)),n))
Formula
a(n) = Sum_{k=1..n} A026820(n, k).
a(n) = A278427(2n,n). - John P. McSorley, Nov 28 2016
Extensions
More terms from Benoit Cloitre, Apr 21 2003