cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A026820 Euler's table: triangular array T read by rows, where T(n,k) = number of partitions in which every part is <= k for 1 <= k <= n. Also number of partitions of n into at most k parts.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 5, 6, 7, 1, 4, 7, 9, 10, 11, 1, 4, 8, 11, 13, 14, 15, 1, 5, 10, 15, 18, 20, 21, 22, 1, 5, 12, 18, 23, 26, 28, 29, 30, 1, 6, 14, 23, 30, 35, 38, 40, 41, 42, 1, 6, 16, 27, 37, 44, 49, 52, 54, 55, 56, 1, 7, 19, 34, 47, 58, 65, 70, 73, 75, 76, 77
Offset: 1

Views

Author

Keywords

Examples

			Triangle starts:
  1;
  1, 2;
  1, 2,  3;
  1, 3,  4,  5;
  1, 3,  5,  6,  7;
  1, 4,  7,  9, 10, 11;
  1, 4,  8, 11, 13, 14, 15;
  1, 5, 10, 15, 18, 20, 21, 22;
  1, 5, 12, 18, 23, 26, 28, 29, 30;
  1, 6, 14, 23, 30, 35, 38, 40, 41, 42;
  1, 6, 16, 27, 37, 44, 49, 52, 54, 55, 56;
  ...
		

References

  • G. Chrystal, Algebra, Vol. II, p. 558.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.2, p. 493.

Crossrefs

Partial sums of rows of A008284, row sums give A058397, central terms give A171985, mirror is A058400.
T(n,n) = A000041(n), T(n,1) = A000012(n), T(n,2) = A008619(n) for n>1, T(n,3) = A001399(n) for n>2, T(n,4) = A001400(n) for n>3, T(n,5) = A001401(n) for n>4, T(n,6) = A001402(n) for n>5, T(n,7) = A008636(n) for n>6, T(n,8) = A008637(n) for n>7, T(n,9) = A008638(n) for n>8, T(n,10) = A008639(n) for n>9, T(n,11) = A008640(n) for n>10, T(n,12) = A008641(n) for n>11, T(n,n-2) = A007042(n-1) for n>2, T(n,n-1) = A000065(n) for n>1.

Programs

  • Haskell
    import Data.List (inits)
    a026820 n k = a026820_tabl !! (n-1) !! (k-1)
    a026820_row n = a026820_tabl !! (n-1)
    a026820_tabl = zipWith
       (\x -> map (p x) . tail . inits) [1..] $ tail $ inits [1..] where
       p 0 _ = 1
       p _ [] = 0
       p m ks'@(k:ks) = if m < k then 0 else p (m - k) ks' + p m ks
    -- Reinhard Zumkeller, Dec 18 2013
    
  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 21 2012
  • Mathematica
    t[n_, k_] := Length@ IntegerPartitions[n, k]; Table[ t[n, k], {n, 12}, {k, n}] // Flatten
    (* Second program: *)
    T[n_, k_] := T[n, k] = If[n==0 || k==1, 1, T[n, k-1] + If[k>n, 0, T[n-k, k]]]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 22 2015, after Alois P. Heinz *)
  • PARI
    T(n,k)=my(s); forpart(v=n,s++,,k); s \\ Charles R Greathouse IV, Feb 27 2018
    
  • SageMath
    from sage.combinat.partition import number_of_partitions_length
    from itertools import accumulate
    for n in (1..11):
        print(list(accumulate([number_of_partitions_length(n, k) for k in (1..n)])))
    # Peter Luschny, Jul 28 2022

Formula

T(T(n,n),n) = A134737(n). - Reinhard Zumkeller, Nov 07 2007
T(A000217(n),n) = A173519(n). - Reinhard Zumkeller, Feb 20 2010
T(n,k) = T(n,k-1) + T(n-k,k). - Thomas Dybdahl Ahle, Jun 13 2011
T(n,k) = Sum_{i=1..min(k,floor(n/2))} T(n-i,i) + Sum_{j=1+floor(n/2)..k} A000041(n-j). - Bob Selcoe, Aug 22 2014 [corrected by Álvar Ibeas, Mar 15 2018]
O.g.f.: Product_{i>=0} 1/(1-y*x^i). - Geoffrey Critzer, Mar 11 2012
T(n,k) = A008284(n+k,k). - Álvar Ibeas, Jan 06 2015

A278427 Triangle read by rows: CU(n,k) is the number of unlabeled subgraphs with k edges of the n-cycle C_n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 5, 3, 1, 1, 6, 5, 7, 6, 4, 1, 1, 7, 6, 9, 9, 8, 4, 1, 1, 8, 7, 11, 12, 13, 9, 5, 1, 1, 9, 8, 13, 15, 18, 15, 12, 5, 1, 1, 10, 9, 15, 18, 23, 22, 21, 13, 6, 1, 1, 11, 10, 17, 21, 28, 29, 31, 24, 16, 6, 1, 1
Offset: 0

Views

Author

John P. McSorley, Nov 21 2016

Keywords

Examples

			For row n = 3 of the triangle below: there are 3 unlabeled subgraphs of the triangle C_3 with 0 edges, 2 with 1 edge, 1 with 2 edges, and 1 with 3 edges (C_3 itself).
Triangle begins:
   1;
   1,  1;
   2,  1,  1;
   3,  2,  1,  1;
   4,  3,  3,  1,  1;
   5,  4,  5,  3,  1,  1;
   6,  5,  7,  6,  4,  1,  1;
   7,  6,  9,  9,  8,  4,  1,  1;
   8,  7, 11, 12, 13,  9,  5,  1,  1;
   9,  8, 13, 15, 18, 15, 12,  5,  1,  1;
  10,  9, 15, 18, 23, 22, 21, 13,  6,  1,  1;
  ...
		

Crossrefs

Cf. A008284.
Rows sums give A000070.
Middle diagonal gives A058397.

Programs

  • PARI
    \\ here P is A008284 as vector of vectors.
    P(n)={[Vecrev(p/y) | p<-Vec(-1 + 1/prod(k=1, n, 1 - y*x^k + O(x*x^n)))]}
    T(n)={my(p=P(n-1)); matrix(n, n, n, k, if(k>=n, k==n, sum(i=k, n-1, p[i][i-k+1])))}
    { my(A=T(12)); for(n=1, #A, print(A[n,1..n])) } \\ Andrew Howroyd, Sep 26 2019

Formula

T(n,n) = 1; T(n,k) = Sum_{i=k+1..n} A008284(i, i-k) for k < n. - Andrew Howroyd, Sep 26 2019

Extensions

Offset corrected and terms a(66) and beyond from Andrew Howroyd, Sep 26 2019

A058401 Triangle of partial row sums of partition triangle A026820.

Original entry on oeis.org

1, 3, 2, 6, 5, 3, 13, 12, 9, 5, 22, 21, 18, 13, 7, 42, 41, 37, 30, 21, 11, 66, 65, 61, 53, 42, 29, 15, 112, 111, 106, 96, 81, 63, 43, 22, 172, 171, 166, 154, 136, 113, 87, 59, 30, 270, 269, 263, 249, 226, 196, 161, 123, 83, 42, 397, 396, 390, 374, 347, 310, 266, 217, 165
Offset: 1

Views

Author

Wolfdieter Lang, Dec 11 2000

Keywords

Comments

m=1 column: A058397(n).

Examples

			1; 3,2; 6,5,3; 13,12,9,5; ...
		

Crossrefs

Formula

a(n, m)= sum(A026820(n, k), k=m..n).
Showing 1-3 of 3 results.