A058694 Partial products p(0)*p(1)*...*p(n) of partition numbers A000041.
1, 1, 2, 6, 30, 210, 2310, 34650, 762300, 22869000, 960498000, 53787888000, 4141667376000, 418308404976000, 56471634671760000, 9939007702229760000, 2295910779215074560000, 681885501426877144320000, 262525918049347700563200000, 128637699844180373275968000000
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..150
- Vaclav Kotesovec, The partition factorial constant and asymptotics of the sequence A058694
- Eric Weisstein's MathWorld, Hurwitz Zeta Function
Programs
-
Maple
a:= proc(n) option remember; combinat[numbpart](n)*`if`(n>0, a(n-1), 1) end: seq(a(n), n=0..40); # Alois P. Heinz, Apr 21 2012 # # The constant S in the Maple notation evalf(Zeta(0, -1/2, 23/24)*sqrt(2/3)*Pi - Zeta(0, 1/2, 23/24)*sqrt(3/2)/Pi+3*(D(GAMMA))(23/24)/(4*Pi^2*GAMMA(23/24)) - (Sum(Zeta(0, j/2, 23/24)*(sqrt(3/2)/Pi)^j/j, j=3..infinity)), 60); # Vaclav Kotesovec, Jun 24 2015
-
Mathematica
Table[Product[PartitionsP[k], {k, 1, n}], {n, 1, 33}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
-
PARI
a(n)=prod(k=2,n, numbpart(k)) \\ Charles R Greathouse IV, Jan 14 2017
Formula
a(n) ~ C * Product_{k=1..n} (exp(Pi*sqrt(2/3*(k-1/24))) / (4*sqrt(3)*(k-1/24)) * (1 - sqrt(3/(2*(k-1/24)))/Pi)), where C = 0.9110167313322499518... is the partition factorial constant A259314. - Vaclav Kotesovec, Jun 24 2015
a(n) ~ C * Gamma(23/24) / (n^(n + 11/24 + 3/(4*Pi^2)) * 2^(2*n) * 3^(n/2) * sqrt(2*Pi)) * exp(Pi*(2*n/3)^(3/2) + n + (11*Pi/(12*sqrt(6)) - sqrt(6)/Pi)*sqrt(n) + S), where C = A259314 and S = Zeta(-1/2, 23/24)*sqrt(2/3)*Pi - Zeta(1/2, 23/24)*sqrt(3/2)/Pi + 3*Gamma'(23/24)/(4*Pi^2*Gamma(23/24)) - Sum_{j>=3} Zeta(j/2, 23/24)*(sqrt(3/2)/Pi)^j/j = -0.02541933397793652709903012019225640813047573968579474..., Zeta is the Hurwitz Zeta Function, in Maple notation Zeta(0,z,v), in Mathematica notation Zeta[z,v], equivalently HurwitzZeta[z,v]. - Vaclav Kotesovec, Jun 24 2015
Comments