cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A058698 a(n) = p(P(n)), P = primes (A000040), p = partition numbers (A000041).

Original entry on oeis.org

2, 3, 7, 15, 56, 101, 297, 490, 1255, 4565, 6842, 21637, 44583, 63261, 124754, 329931, 831820, 1121505, 2679689, 4697205, 6185689, 13848650, 23338469, 49995925, 133230930, 214481126, 271248950, 431149389, 541946240, 851376628, 3913864295, 5964539504, 11097645016
Offset: 1

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Comments

Number of partitions of n-th prime. - Omar E. Pol, Aug 05 2011

Examples

			a(2) = 3 because the second prime is 3 and there are three partitions of 3: {1, 1, 1}, {1, 2}, {3}.
		

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo2, integral)
    a058698 n = a058698_list !! (n-1)
    a058698_list = map (pMemo 1) a000040_list where
       pMemo = memo2 integral integral p
       p _ 0 = 1
       p k m | m < k     = 0
             | otherwise = pMemo k (m - k) + pMemo (k + 1) m
    -- Reinhard Zumkeller, Aug 09 2015
  • Mathematica
    Table[PartitionsP[Prime[n]], {n, 30}] (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008 *)

Formula

a(n) = A000041(A000040(n)). - Omar E. Pol, Aug 05 2011

A247087 a(n) = pi(phi(p(P(n)))) = A000720(A000010(A000041(A000040(n)))).

Original entry on oeis.org

0, 1, 3, 4, 9, 25, 41, 39, 168, 462, 442, 1939, 2571, 3998, 5123, 17040, 24853, 38887, 195022, 183430, 404386, 381060, 1162366, 2105509, 1799881, 5966593, 5380661, 14184985, 10473967, 22631261, 135452589, 109540327, 244730051, 487610708, 604467085, 671043205, 3350187738
Offset: 1

Views

Author

Alois P. Heinz, Mar 14 2015

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat): p:=numbpart: P:=ithprime:
    a:= n-> pi(phi(p(P(n)))):
    seq(a(n), n=1..20);
  • Mathematica
    a[n_] := PrimePi @ EulerPhi @ PartitionsP @ Prime @ n;
    Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Mar 25 2017 *)

Formula

Extensions

a(31)-a(37) from Amiram Eldar, Sep 03 2024
Showing 1-2 of 2 results.