A058716 Triangle T(n,k) giving number of nonisomorphic loopless matroids of rank k on n labeled points (n >= 0, 0 <= k <= n).
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 9, 4, 1, 0, 1, 10, 25, 18, 5, 1, 0, 1, 14, 70, 85, 31, 6, 1, 0, 1, 21, 217, 832, 288, 51, 7, 1
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k >= 0) begins as follows: 1; 0, 1; 0, 1, 1; 0, 1, 2, 1; 0, 1, 4, 3, 1; 0, 1, 6, 9, 4, 1; 0, 1, 10, 25, 18, 5, 1; 0, 1, 14, 70, 85, 31, 6, 1; 0, 1, 21, 217, 832, 288, 51, 7, 1; ...
Links
- W. M. B. Dukes, Tables of matroids.
- W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
- W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
- W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
- Index entries for sequences related to matroids
Crossrefs
Extensions
Corrected and extended by Jean-François Alcover, Oct 21 2013
Reverted to original data by Sean A. Irvine, Aug 16 2022