A058854 a(n) = largest prime in the factorization of n-th Franel number (A000172).
2, 5, 7, 173, 563, 73, 41, 369581, 1409, 109, 449, 176459, 44221, 12148537, 148381, 11399977, 5779337237, 151431487, 26013917, 57405011, 939783003793, 277157, 191141, 13515438731, 79702499, 236463558839, 1883371283883863, 313527009031, 138961158000728258971
Offset: 1
Keywords
Examples
a(4)=173 because the 4th Franel number is 346 = 2^1 * 173^1, in which 173 is the largest prime.
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..150
Crossrefs
Cf. A000172.
Programs
-
Maple
with(combinat): with(numtheory): A000172 := n->sum(binomial(n,k)^3, k=0..n): for n from 1 to 50 do printf(`%d,`, sort(ifactors(A000172(n))[2])[nops(ifactors(A000172(n))[2])][1]) od: # Corrected by Sean A. Irvine, Aug 31 2022 # second Maple program: a:= n-> max(numtheory[factorset](add(binomial(n, k)^3, k=0..n))): seq(a(n), n=1..30); # Alois P. Heinz, Aug 31 2022
-
Mathematica
Do[ Print[ FactorInteger[ Sum[ Binomial[n, k]^3, {k, 0, n}]] [[ -1, 1]] ], {n, 1, 32} ]
Extensions
More terms from James Sellers, Feb 01 2001
Data corrected and entry revised by Sean A. Irvine, Aug 31 2022