cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058854 a(n) = largest prime in the factorization of n-th Franel number (A000172).

Original entry on oeis.org

2, 5, 7, 173, 563, 73, 41, 369581, 1409, 109, 449, 176459, 44221, 12148537, 148381, 11399977, 5779337237, 151431487, 26013917, 57405011, 939783003793, 277157, 191141, 13515438731, 79702499, 236463558839, 1883371283883863, 313527009031, 138961158000728258971
Offset: 1

Views

Author

Felix Goldberg (felixg(AT)tx.technion.ac.il), Jan 30 2001

Keywords

Examples

			a(4)=173 because the 4th Franel number is 346 = 2^1 * 173^1, in which 173 is the largest prime.
		

Crossrefs

Cf. A000172.

Programs

  • Maple
    with(combinat): with(numtheory): A000172 := n->sum(binomial(n,k)^3, k=0..n): for n from 1 to 50 do printf(`%d,`, sort(ifactors(A000172(n))[2])[nops(ifactors(A000172(n))[2])][1]) od: # Corrected by Sean A. Irvine, Aug 31 2022
    # second Maple program:
    a:= n-> max(numtheory[factorset](add(binomial(n, k)^3, k=0..n))):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 31 2022
  • Mathematica
    Do[ Print[ FactorInteger[ Sum[ Binomial[n, k]^3, {k, 0, n}]] [[ -1, 1]] ], {n, 1, 32} ]

Extensions

More terms from James Sellers, Feb 01 2001
Data corrected and entry revised by Sean A. Irvine, Aug 31 2022