cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A099553 Number of rooted 2-connected loopless 4-regular planar maps with n inner faces.

Original entry on oeis.org

1, 2, 10, 42, 209, 1066, 5726, 31688, 180234, 1047356, 6198500, 37253790, 226891665, 1397880330, 8699804598, 54629525808, 345778883678, 2204263514460, 14142192816908, 91263177339092, 592069697914170, 3859674384409668, 25272938482712044
Offset: 3

Views

Author

N. J. A. Sloane, Nov 18 2004

Keywords

Comments

a(n) is also the number of rooted loopless planar maps with n-1 edges and no isthmuses. - Andrew Howroyd, Apr 01 2021
a(n) is also the number of rooted 2-connected plane quadrangulations with n+1 vertices (allowing multiple edges). - Brendan McKay, Apr 08 2025

Examples

			A(x) = x^3 + 2*x^4 + 10*x^5 + 42*x^6 + 209*x^7 + 1066*x^8 + 5726*x^9 + ...
		

Crossrefs

Row sums of A342980.

Programs

  • Maple
    A099553 := proc(n)
        local e;
        e := n-1 ;
        add(binomial(2*e-r,e-2-2*r)*2^r*binomial(2*e,r),r=0..floor(e/2-1)) ;
        %-3*add(binomial(2*e-r,e-3-2*r)*2^r*binomial(2*e,r),r=0..floor((e-3)/2)) ;
        %*2/e ;
    end proc:
    seq(A099553(n),n=3..30) ; # R. J. Mathar, Aug 28 2018
  • Mathematica
    a[n_] := Module[{e, s}, e = n-1; s = Sum[Binomial[2e-r, e-2-2r]*2^r*Binomial[2e, r], {r, 0, Floor[e/2-1]}]; s = s-3*Sum[Binomial[2e-r, e-3-2r]*2^r*Binomial[2e, r], {r, 0, Floor[(e-3)/2]}]; s=2s/e];
    Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Feb 14 2023, after R. J. Mathar *)
  • PARI
    F = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z);
    G = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2;
    Z(N) = {
      my(z0=1+O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G,'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1);
      z0;
    };
    seq(N) = Vec(subst(F, 'z, Z(N+3)));
    seq(23)
    \\ test: y = Ser(seq(303))*'x^3; 0 == 8*y^4 + (32*x + 12)*y^3 + (48*x^2 + 23*x + 6)*y^2 + (32*x^3 + 10*x^2 - 10*x + 1)*y + x^3*(8*x - 1)
    \\ Gheorghe Coserea, Jul 13 2018
    
  • PARI
    seq(n)={my(g=1+x*sum(n=1,n,x^n*binomial(3*n, n)*2/((n+1)*(2*n+1))) + O(x*x^n)); Vec(-1 + sqrt(serreverse(x/g^2)/x))} \\ Andrew Howroyd, Apr 06 2021

Formula

From Gheorghe Coserea, Jul 12 2018: (Start)
G.f. A(x) = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z), where z = 1 + 2*x^2 + 6*x^3 + 34*x^4 + 176*x^5 + 1004*x^6 + ... satisfies 0 = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2. (See Theorem D in reference.)
G.f. y=A(x) satisfies:
0 = 8*y^4 + (32*x + 12)*y^3 + (48*x^2 + 23*x + 6)*y^2 + (32*x^3 + 10*x^2 - 10*x + 1)*y + x^3*(8*x - 1).
0 = x^3*(2*x + 1)*(49*x - 18)*(196*x - 27)*y'''' + x^2*(96040*x^3 - 27587*x^2 - 9297*x + 972)*y''' + (72030*x^4 - 36309*x^3 + 2010*x^2 - 864*x)*y'' - 6*(8*x + 3)*(49*x + 12)*y' + (2352*x + 576)*y.
(End)
Conjecture: 3*n *(3*n-1) *(5*n-8) *(3*n-2)*a(n) -(n-2) *(2*n-3) *(355*n^2 -703*n +300)*a(n-1) -98*(n-2) *(5*n-3) *(2*n-3) *(2*n-5) *a(n-2)=0. - R. J. Mathar, Aug 28 2018
G.f.: x*(A(x) - 1) where A(x) satisfies A(x) = G(x*A(x)^2) and (G(x) + 2*x - 1)/x is the g.f. of A000139. - Andrew Howroyd, Apr 06 2021

A058859 Number of 1-connected rooted cubic planar maps with n faces.

Original entry on oeis.org

1, 3, 19, 143, 1089, 8564, 69075, 569469, 4783377, 40829748, 353395155, 3096104105, 27415923905, 245069538465, 2209155012387, 20064713628389, 183478258249569, 1688112897834496, 15618577076864579, 145242456429736935
Offset: 4

Views

Author

N. J. A. Sloane, Jan 06 2001; revised Feb 17 2006

Keywords

Crossrefs

Programs

  • Maple
    eq:=16*x^11*m^4+(-24*x^9+32*x^8+72*x^7)*m^3+(-15*x^7-108*x^6-194*x^5-92*x^4+x^3)*m^2+(-2*x^5-33*x^4-70*x^3-46*x^2+16*x-1)*m-x^2-11*x+1: m:=sum(A[j]*x^j,j=0..35): A[0]:=solve(subs(x=0,expand(eq))): for n from 1 to 35 do A[n]:=solve(coeff(expand(eq),x^n)=0) od: C:=(1-2*x-4*x^2)*x^4*m-2*x^8*m^2: Cser:=series(C,x=0,30): seq(coeff(Cser,x^n),n=4..26); # Emeric Deutsch, Nov 30 2005
  • PARI
    F = x^4*(1-2*x-4*x^2)*z - 2*x^8*z^2;
    G = 16*x^11*z^4 - 8*x^7*(3*x^2 - 4*x - 9)*z^3 - x^3*(15*x^4 + 108*x^3 + 194*x^2 + 92*x - 1)*z^2 -  (2*x^5 + 33*x^4 + 70*x^3 + 46*x^2 - 16*x + 1)*z - x^2 - 11*x + 1;
    Z(N) = {
      my(z0 = 1 + O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1); z0;
    };
    seq(N) = Vec(subst(F, 'z, Z(N)));
    seq(20)
    \\ test: y = Ser(seq(303))*'x^4; 0 == 64*y^4 + (912*x^4 + 640*x^3 + 384*x^2 + 3328*x + 2864)*y^3 - (1743*x^8 + 13968*x^7 + 13344*x^6 - 52888*x^5 - 116934*x^4 - 71248*x^3 - 4064*x^2 + 3768*x - 41)*y^2 + (784*x^12 + 13524*x^11 + 29478*x^10 - 51033*x^9 - 194686*x^8 - 166400*x^7 - 5454*x^6 + 43746*x^5 + 4030*x^4 - 5652*x^3 + 904*x^2 - 41*x)*y - x^5*(x^2 + 11*x - 1)*(1568*x^8 + 476*x^7 - 7456*x^6 - 8458*x^5 - 27*x^4 + 2672*x^3 + 130*x^2 - 330*x + 41)
    \\ Gheorghe Coserea, Jul 15 2018

Formula

G.f.: x^4*(1-2*x-4*x^2)*m-2*x^8*m^2, where m is defined by 16*x^11*m^4 + (-24*x^9+32*x^8+72*x^7)*m^3 + (-15*x^7-108*x^6-194*x^5-92*x^4+x^3)*m^2 + (-2*x^5-33*x^4-70*x^3-46*x^2+16*x-1)*m - x^2-11*x+1=0. - Emeric Deutsch, Nov 30 2005
From Gheorghe Coserea, Jul 16 2018: (Start):
G.f. y=A(x) satisfies:
0 = 64*y^4 + (912*x^4 + 640*x^3 + 384*x^2 + 3328*x + 2864)*y^3 - (1743*x^8 + 13968*x^7 + 13344*x^6 - 52888*x^5 - 116934*x^4 - 71248*x^3 - 4064*x^2 + 3768*x - 41)*y^2 + (784*x^12 + 13524*x^11 + 29478*x^10 - 51033*x^9 - 194686*x^8 - 166400*x^7 - 5454*x^6 + 43746*x^5 + 4030*x^4 - 5652*x^3 + 904*x^2 - 41*x)*y - x^5*(x^2 + 11*x - 1)*(1568*x^8 + 476*x^7 - 7456*x^6 - 8458*x^5 - 27*x^4 + 2672*x^3 + 130*x^2 - 330*x + 41).
0 = x*(4*x^2 + 8*x + 5)*(27*x^6 + 216*x^5 + 171*x^4 - 208*x^3 - 339*x^2 + 24*x + 1)*(53687232*x^17 + 962429472*x^16 + 4910442696*x^15 + 11262716564*x^14 + 13535708340*x^13 + 6699339314*x^12 - 8161216832*x^11 - 27707772057*x^10 - 38282906893*x^9 - 23841839272*x^8 + 3164178022*x^7 + 13551725887*x^6 + 6618789645*x^5 + 110368160*x^4 - 189595230*x^3 + 52114000*x^2 - 2282040*x - 80000)*y'''' - (23192884224*x^25 + 642325749120*x^24 + 7010404371072*x^23 + 38396140051536*x^22 + 119087871158520*x^21 + 209055666121344*x^20 + 149537518315396*x^19 - 179206877652920*x^18 - 594068689834972*x^17 - 713069283397760*x^16 - 388115755832091*x^15 + 185412410945637*x^14 + 709124462066474*x^13 + 898548947063912*x^12 + 629038710881040*x^11 + 159866881148998*x^10 - 107640739893374*x^9 - 101244290972424*x^8 - 23418947186993*x^7 + 3644481830365*x^6 + 957436398080*x^5 - 94641974160*x^4 + 1607421440*x^3 + 430075760*x^2 - 17060400*x - 400000)*y''' + (69578652672*x^24 + 1910859372288*x^23 + 21034975582656*x^22 + 114742977687936*x^21 + 350375920009560*x^20 + 585065268522672*x^19 + 317856584972580*x^18 - 736872920930424*x^17 - 1812132349221252*x^16 - 1696870248263700*x^15 - 376785528937023*x^14 + 1026609868750112*x^13 + 1799851001684942*x^12 + 1902275760186412*x^11 + 1364464778889680*x^10 + 504031822062384*x^9 - 75374914747162*x^8 - 173636873122824*x^7 - 67965626046313*x^6 - 3235617436480*x^5 + 1670710238920*x^4 - 60241392600*x^3 - 9066655340*x^2 + 1117875760*x + 15179600)*y'' - 12*(11596442112*x^23 + 315790249536*x^22 + 3414867276384*x^21 + 17899179378120*x^20 + 51714502467480*x^19 + 77928289056012*x^18 + 22675972179932*x^17 - 134244171463804*x^16 - 254323096657040*x^15 - 181481980531415*x^14 + 24427607774667*x^13 + 176309477492908*x^12 + 214672437288248*x^11 + 192416432064275*x^10 + 135698454441595*x^9 + 59484339948854*x^8 + 1838501691038*x^7 - 16090673029130*x^6 - 8704257466200*x^5 - 1085436408240*x^4 + 33590844600*x^3 - 6624333760*x^2 - 719889600*x - 8800000)*y' + 12*(11596442112*x^22 + 313103937024*x^21 + 3232316223360*x^20 + 15530584062240*x^19 + 39522162905640*x^18 + 45540724655832*x^17 - 16695945361396*x^16 - 123726467878420*x^15 - 152050336659260*x^14 - 49261893247550*x^13 + 73707236060447*x^12 + 119787972312984*x^11 + 115583117491500*x^10 + 95686381642950*x^9 + 56811985465335*x^8 + 13932882885644*x^7 - 9032398496482*x^6 - 8810946218840*x^5 - 1354608403560*x^4 + 47155824160*x^3 - 6777547760*x^2 - 855133760*x - 10609600)*y.
(End)

Extensions

More terms from Emeric Deutsch, Nov 30 2005

A058861 Number of 3-connected rooted cubic planar maps with n faces and girth at least 4.

Original entry on oeis.org

0, 0, 1, 3, 12, 59, 313, 1713, 9559, 54189, 311460, 1812281, 10661303, 63336873, 379601353, 2293205687, 13953099573, 85451824382, 526431271347, 3260689089300, 20296848348929, 126918850161182, 796981464813540
Offset: 4

Views

Author

N. J. A. Sloane, Jan 06 2001; revised Feb 17 2006

Keywords

Comments

Number of 3-connected triangle-free rooted cubic maps with n faces.

Crossrefs

Programs

  • Maple
    eq:=(x^3-3*x^2+3*x-1)*g^4+(4*x^4-12*x^3+9*x^2+2*x-3)*g^3+(6*x^5-10*x^4-15*x^3+36*x^2-14*x-3)*g^2+(4*x^6+4*x^5-45*x^4+82*x^3-59*x^2+14*x-1)*g+x^7+5*x^6-8*x^5+x^4: g:=sum(A[j]*x^j,j=1..37): for n from 1 to 37 do A[n]:=solve(coeff(expand(eq),x^n)=0) od: C3:=x^2*(1-3*x)*g: C3ser:=series(C3,x=0,34): seq(coeff(C3ser,x^n),n=6..30); # Emeric Deutsch, Nov 30 2005
  • PARI
    F = x^2*(1 - 3*x)*z;
    G = x^12*(x - 1)^3*z^4 + x^8*(x - 1)^2*(2*x - 3)*(2*x + 1)*z^3 + x^4*(x - 1)*(6*x^4 - 4*x^3 - 19*x^2 + 17*x + 3)*z^2 + (4*x^6 + 4*x^5 - 45*x^4 + 82*x^3 - 59*x^2 + 14*x - 1)*z + (x^3 + 5*x^2 - 8*x + 1);
    Z(N) = {
      my(z0 = 1 + O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1); z0;
    };
    seq(N) = concat([0, 0], Vec(subst(F, 'z, 'x^4*Z(N))));
    seq(21)
    \\ test: y = Ser(seq(303))*'x^4; 0 == (x - 1)^3*y^4 - x^2*(x - 1)^2*(2*x - 3)*(2*x + 1)*(3*x - 1)*y^3 + x^4*(x - 1)*(3*x - 1)^2*(6*x^4 - 4*x^3 - 19*x^2 + 17*x + 3)*y^2 - x^6*(3*x - 1)^3*(4*x^6 + 4*x^5 - 45*x^4 + 82*x^3 - 59*x^2 + 14*x - 1)*y + x^12*(3*x - 1)^4*(x^3 + 5*x^2 - 8*x + 1)
    \\ Gheorghe Coserea, Jul 15 2018

Formula

G.f.: x^2*(1-3*x)*g, where g is defined by (x^3-3*x^2+3*x-1)*g^4 + (4*x^4-12*x^3+9*x^2+2*x-3)*g^3 + (6*x^5-10*x^4-15*x^3+36*x^2-14*x-3)*g^2 + (4*x^6+4*x^5-45*x^4+82*x^3-59*x^2+14*x-1)*g + x^7+5*x^6-8*x^5+x^4=0. - Emeric Deutsch, Nov 30 2005
From Gheorghe Coserea, Jul 15 2018: (Start)
G.f. y=A(x) satisfies:
0 = (x - 1)^3*y^4 - x^2*(x - 1)^2*(2*x - 3)*(2*x + 1)*(3*x - 1)*y^3 + x^4*(x - 1)*(3*x - 1)^2*(6*x^4 - 4*x^3 - 19*x^2 + 17*x + 3)*y^2 - x^6*(3*x - 1)^3*(4*x^6 + 4*x^5 - 45*x^4 + 82*x^3 - 59*x^2 + 14*x - 1)*y + x^12*(3*x - 1)^4*(x^3 + 5*x^2 - 8*x + 1).
0 = x^4*(x - 1)^3*(3*x - 1)^4*(256*x^3 - 512*x^2 + 256*x - 27)*(660*x^5 - 2668*x^4 + 4177*x^3 - 3252*x^2 + 1305*x - 220)*y'''' - 4*x^3*(x - 1)^2*(3*x - 1)^3*(696960*x^10 - 5684352*x^9 + 19870624*x^8 - 39218578*x^7 + 48478923*x^6 - 39311914*x^5 + 21210466*x^4 - 7501069*x^3 + 1650104*x^2 - 201370*x + 10395)*y''' + 4*x^2*(x - 1)*(3*x - 1)^2*(7579440*x^12 - 77500656*x^11 + 341548428*x^10 - 862746936*x^9 + 1396393806*x^8 - 1530275829*x^7 + 1167408906*x^6 - 625929723*x^5 + 234247228*x^4 - 59616890*x^3 + 9784582*x^2 - 931830*x + 38940)*y'' - 24*x*(3*x - 1)*(8523900*x^14 - 105292620*x^13 + 561229815*x^12 - 1731677190*x^11 + 3479254732*x^10 - 4837165728*x^9 + 4815815835*x^8 - 3498631418*x^7 + 1868972298*x^6 - 732379803*x^5 + 207693098*x^4 - 41430916*x^3 + 5510394*x^2 - 438095*x + 15730)*y' + 24*(27442800*x^15 - 372895380*x^14 + 2140330050*x^13 - 7047776880*x^12 + 15074631336*x^11 - 22357962673*x^10 + 23891962029*x^9 - 18825921582*x^8 + 11080006886*x^7 - 4892373579*x^6 + 1614037497*x^5 - 392156906*x^4 + 68130318*x^3 - 8004294*x^2 + 569210*x - 18480)*y.
(End)

Extensions

More terms from Emeric Deutsch, Nov 30 2005

A318101 Number of rooted 2-connected 4-regular planar maps, which may have loops, with n inner faces.

Original entry on oeis.org

2, 9, 30, 154, 986, 6977, 52590, 415678, 3409032, 28787498, 248930292, 2195238596, 19682012382, 178974809121, 1647460326046, 15327261314934, 143942130406288, 1363094805806462, 13004498819335396, 124900418475706476, 1206861624598185332, 11725558427958257690, 114494070652568918380
Offset: 2

Views

Author

Gheorghe Coserea, Aug 16 2018

Keywords

Examples

			A(x) = 2*x^2 + 9*x^3 + 30*x^4 + 154*x^5 + 986*x^6 + 6977*x^7 + 52590*x^8 + ...
		

Crossrefs

Programs

  • PARI
    F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x));
    G = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2;
    Z(N) = {
      my(z0=1+O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1);
      z0;
    };
    seq(N) = Vec((1 + 2*x)*subst(F, 'z, Z(N+2)));
    seq(23)
    \\ test: y=Ser(seq(303))*x^2; 0 == 8*y^4 + 4*(2*x + 1)*(2*x + 3)*y^3 - (x - 6)*(2*x + 1)^2*y^2 + (2*x + 1)^3*(18*x^2 - 16*x + 1)*y + x^2*(2*x + 1)^4*(27*x - 2)

Formula

G.f.: (1 + 2*x)*F, where F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x)) and z = 1 + 2*x + 6*x^2 + 34*x^3 + 254*x^4 + 2052*x^5 + 17332*x^6 + 151658*x^7 + ... satisfies 0 = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2. (see Theorem C in link)
G.f. y=A(x) satisfies:
0 = 8*y^4 + 4*(2*x + 1)*(2*x + 3)*y^3 - (x - 6)*(2*x + 1)^2*y^2 + (2*x + 1)^3*(18*x^2 - 16*x + 1)*y + x^2*(2*x + 1)^4*(27*x - 2).
0 = x^3*(2*x + 1)^4*(4*x^2 - 2*x + 1)*(108*x^2 - 304*x + 27)*(128*x^6 - 1504*x^5 + 5864*x^4 - 8282*x^3 + 4381*x^2 - 659*x + 60)*y'''' - x^2*(2*x + 1)^3*(417792*x^10 - 1973504*x^9 - 7891840*x^8 + 53958576*x^7 - 106786208*x^6 + 92663096*x^5 - 38721768*x^4 + 9604075*x^3 - 1447438*x^2 + 141966*x - 4860)*y''' + 3*x*(2*x + 1)^2*(163840*x^12 - 1929216*x^11 + 11348480*x^10 - 47888896*x^9 + 125855008*x^8 - 184580160*x^7 + 158611640*x^6 - 81013580*x^5 + 22892592*x^4 - 3821021*x^3 + 403960*x^2 - 23876*x + 120)*y'' - 12*(2*x + 1)*(163840*x^13 - 1888256*x^12 + 11294208*x^11 - 48430080*x^10 + 125093344*x^9 - 184709184*x^8 + 159190952*x^7 - 80413964*x^6 + 23140740*x^5 - 3792653*x^4 + 391233*x^3 - 28410*x^2 - 199*x + 30)*y' + 24*(163840*x^13 - 1847296*x^12 + 11198976*x^11 - 48855552*x^10 + 124699296*x^9 - 184627968*x^8 + 159583928*x^7 - 80114156*x^6 + 23238984*x^5 - 3787577*x^4 + 385076*x^3 - 30072*x^2 - 292*x + 40)*y.
a(n) ~ c / (sqrt(Pi) * n^(5/2) * r^n), where r = (76 - 7*sqrt(103))/54 and c = sqrt(3278181/(3125*(109592 + 10823*sqrt(103)))). - Vaclav Kotesovec, Aug 25 2018

A318102 Number of rooted 2-connected 4-regular maps on the projective plane, which may have loops, with n inner faces.

Original entry on oeis.org

5, 38, 199, 1466, 12365, 109700, 1003929, 9404402, 89690920, 867506788, 8486154214, 83790178300, 833805753167, 8352569222312, 84150924820499, 852039732062530, 8664839058268872, 88459350543053228, 906208005777385526, 9312350891307447116, 95963703215086597466, 991421114632619679480
Offset: 1

Views

Author

Gheorghe Coserea, Aug 19 2018

Keywords

Examples

			A(x) = 5*x + 38*x^2 + 199*x^3 + 1466*x^4 + 12365*x^5 + 109700*x^6 + ...
		

Crossrefs

Programs

  • PARI
    F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x));
    G = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2;
    Z(N) = {
      my(z0=1+O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1);
      z0;
    };
    f(N) = subst((z + 2*z*F - 1)/(2*z^2*x), 'z, Z(N));
    Fp2(N) = {
      my(z=Z(N), f=f(N));
      ((1 - sqrt(1 - 4*z^2*x*f))/(x*z) + z*(z-3)/2 * f^2 + 2*(f - 1))/(2*f - 1);
    };
    Fp4(N) = (1 + 2*x)*(Fp2(N) - 1) + 3*subst(F, 'z, Z(N+2));
    seq(N) = Vec(Fp4(N+1));
    seq(22)
    /* test:
    system("wget https://oeis.org/A318102/a318102.txt");
    apply_diffop(p, s) = { \\ apply diffop p (encoded as Pol in Dx) to Ser s
      s=intformal(s);
      sum(n=0, poldegree(p, 'Dx), s=s'; polcoeff(p, n, 'Dx) * s);
    };
    0 == apply_diffop(read("a318102.txt"), Fp4(1001))
    */

Formula

G.f.: (1 + 2*x)*(Fp2 - 1) + 3*F, where Fp2 and F are given by the system of algebraic equations:
0 = x*(4*x^2 + 1)*z^4 - 4*x*(2*x - 1)*z^3 - 5*x*z^2 + 2*(2*x - 1)*z + 2,
F = (1 - z + 2*z^3*x*(1 - x))/(2*z*(1 - z^2*x)),
f = (z + 2*z*F - 1)/(2*z^2*x),
Fp2 = ((1 - sqrt(1 - 4*z^2*x*f))/(x*z) + z*(z-3)/2 * f^2 + 2*(f - 1))/(2*f - 1).
The initial coefficients of the solutions are:
z = 1 + 2*x + 6*x^2 + 34*x^3 + 254*x^4 + 2052*x^5 + 17332*x^6 + ...,
F = 2*x^2 + 5*x^3 + 20*x^4 + 114*x^5 + 758*x^6 + 5461*x^7 + 41668*x^8 + ...,
f = 1 + x + 6*x^2 + 37*x^3 + 262*x^4 + 2050*x^5 + 17064*x^6 + ...,
Fp2 = 1 + 5*x + 22*x^2 + 140*x^3 + 1126*x^4 + 9771*x^5 + 87884*x^6 + ...
(see Facts 2-5 and Theorem B in the link)
G.f. y=A(x) satisfies:
0 = 4096*x^7*(4*x^2 - 2*x + 1)^2*y^8 + 2048*x^6*(4*x^2 - 2*x + 1)^2*(36*x^2 + 16*x - 7)*y^7 + 128*x^5*(4*x^2 - 2*x + 1)*(8320*x^6 + 19648*x^5 - 1076*x^4 - 1804*x^3 + 1907*x^2 - 580*x + 126)*y^6 + 32*x^4*(4*x^2 - 2*x + 1)*(225280*x^7 + 444240*x^6 + 84688*x^5 - 29552*x^4 + 32044*x^3 - 9577*x^2 + 976*x - 280)*y^5 + x^3*(40239104*x^11 - 79837184*x^10 + 295013376*x^9 - 58917488*x^8 + 30598624*x^7 + 31536856*x^6 - 14288200*x^5 + 7449849*x^4 - 1791392*x^3 + 303304*x^2 - 15680*x + 2800)*y^4 + 2*x^2*(272629760*x^13 - 24282112*x^12 - 175736320*x^11 + 322666592*x^10 - 42540704*x^9 + 44400384*x^8 + 30919616*x^7 - 7960626*x^6 + 8259482*x^5 - 2256409*x^4 + 613344*x^3 - 92803*x^2 + 2512*x - 252)*y^3 + x*(4137222144*x^14 + 1879746560*x^13 - 1113429024*x^12 + 1342878720*x^11 + 65189712*x^10 + 10079664*x^9 + 147999470*x^8 - 45142196*x^7 + 25711384*x^6 - 6520084*x^5 + 2042177*x^4 - 392900*x^3 + 48476*x^2 - 1064*x + 49)*y^2 - 2*(1128267776*x^16 - 4335727616*x^15 - 6678567648*x^14 + 1061181280*x^13 - 2785972352*x^12 + 213096160*x^11 - 166061526*x^10 - 112334126*x^9 + 50212017*x^8 - 27194278*x^7 + 7091863*x^6 - 1701882*x^5 + 350358*x^4 - 36314*x^3 + 2951*x^2 - 44*x + 1)*y + x*(17448304640*x^16 - 38432538624*x^15 + 29298729744*x^14 - 1261398240*x^13 + 9372670936*x^12 + 6841726488*x^11 + 1476038993*x^10 + 1644370884*x^9 + 177903076*x^8 + 98892200*x^7 + 15461596*x^6 - 2656592*x^5 + 901090*x^4 - 145464*x^3 + 25339*x^2 - 364*x + 10).

A318103 Number of rooted 2-connected loopless 4-regular maps on the projective plane with n inner faces.

Original entry on oeis.org

6, 21, 138, 781, 4836, 30099, 191698, 1236024, 8063492, 53086930, 352249244, 2352800079, 15805224904, 106702428453, 723509453442, 4924851788720, 33638721268140, 230477992427450, 1583550831926508, 10907729315809642, 75307599054762424, 521026923863915206, 3611800088179535100
Offset: 2

Views

Author

Gheorghe Coserea, Aug 20 2018

Keywords

Examples

			A(x) = 6*x^2 + 21*x^3 + 138*x^4 + 781*x^5 + 4836*x^6 + 30099*x^7 + ...
		

Crossrefs

Programs

  • PARI
    F = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z);
    G = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2;
    Z(N) = {
      my(z0=1+O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1);
      z0;
    };
    f(N) = subst((z - 1 + 2*z*x + 2*z*F)/(2*x*z^2), 'z, Z(N));
    Fp4(N) = {
      my(z=Z(N), f=f(N));
    ((1 - sqrt(1- 4*x*z^2*f))/(x*z) - z*f - x*(z*f)^3*(2 - f))/(2*f - 1) - 1;
    };
    seq(N) = Vec(Fp4(N+2));
    seq(23)
    /* test:
    system("wget https://oeis.org/A318103/a318103.txt");
    apply_diffop(p, s) = {
      s=intformal(s);
      sum(n=0, poldegree(p, 'Dx), s=s'; polcoeff(p, n, 'Dx) * s);
    };
    0 == apply_diffop(read("a318103.txt"), Fp4(1001))
    */

Formula

G.f.: ((1 - sqrt(1- 4*x*z^2*f))/(x*z) - z*f - x*(z*f)^3*(2 - f))/(2*f - 1) - 1, where z and f are given by the system of algebraic equations:
0 = x*(4*x + 1)*z^4 + 4*x*z^3 - 5*x*z^2 - 2*z + 2,
F = (2*z^3*x^2 + (2*z^3 - 2*z)*x + (-z + 1))/(-2*z^3*x + 2*z),
f = (z - 1 + 2*z*x + 2*z*F)/(2*x*z^2).
The initial coefficients of the solutions are:
z = 1 + 2*x^2 + 6*x^3 + 34*x^4 + 176*x^5 + 1004*x^6 + 5858*x^7 + ...
F = x^3 + 2*x^4 + 10*x^5 + 42*x^6 + 209*x^7 + 1066*x^8 + 5726*x^9 + ...
f = 1 + x + 2*x^2 + 9*x^3 + 42*x^4 + 222*x^5 + 1232*x^6 + 7137*x^7 + ...
(see Facts 6-7 and Theorem C in the link)
G.f. y=A(x) satisfies:
0 = 4096*x^7*(2*x + 1)^2*y^8 + 2048*x^6*(2*x + 1)^2*(16*x - 7)*y^7 + 128*x^5*(2*x + 1)*(1792*x^3 - 285*x^2 - 76*x + 126)*y^6 + 32*x^4*(2*x + 1)*(14336*x^4 - 2360*x^3 - 57*x^2 - 144*x - 280)*y^5 + x^3*(1146880*x^6 + 625920*x^5 + 282633*x^4 + 174368*x^3 + 44232*x^2 + 6720*x + 2800)*y^4 + 2*x^2*(2*x + 1)*(229376*x^6 + 108288*x^5 + 419113*x^4 + 53390*x^3 - 39619*x^2 + 1000*x - 252)*y^3 + x*(458752*x^8 + 740608*x^7 + 3399862*x^6 + 1371564*x^5 - 317093*x^4 - 58308*x^3 + 25400*x^2 - 672*x + 49)*y^2 + 2*(65536*x^9 + 162048*x^8 + 1258098*x^7 + 287981*x^6 - 86682*x^5 + 22504*x^4 + 5250*x^3 - 2026*x^2 + 36*x - 1)*y + x^2*(16384*x^7 + 58112*x^6 + 674825*x^5 + 33912*x^4 + 11954*x^3 + 23076*x^2 - 390*x + 12).
From Vaclav Kotesovec, Aug 25 2018: (Start)
a(n) ~ c1 * (196/27)^n / n^(5/4) * (1 + c2/n^(1/4) + c3/n^(1/2)), where
c1 = 7^(5/4) * Gamma(1/4) / (5^(5/4) * 3^(3/4) * Pi),
c2 = -17 * 7^(1/4) * sqrt(Pi) / (3^(7/4) * 5^(1/4) * Gamma(1/4)),
c3 = 71 * sqrt(7) * Pi / (2^(3/2) * sqrt(3) * 5^(3/2) * Gamma(1/4)^2). (End)
Showing 1-6 of 6 results.