cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A058989 Largest number of consecutive integers such that each is divisible by a prime <= the n-th prime.

Original entry on oeis.org

1, 3, 5, 9, 13, 21, 25, 33, 39, 45, 57, 65, 73, 89, 99, 105, 117, 131, 151, 173, 189, 199, 215, 233, 257, 263, 281, 299, 311, 329, 353, 377, 387, 413, 431, 449, 475, 491, 509, 537, 549, 573, 599, 615, 641, 659, 685, 717, 741, 761, 797, 809, 833, 857, 875, 907, 925, 953, 977, 1001, 1029, 1057, 1097, 1109
Offset: 1

Views

Author

Jud McCranie, Jan 16 2001

Keywords

Comments

Marty Weissman conjectured that a(n)=2q-1, where q is the largest prime smaller than the n-th prime. The conjecture holds for the first few terms, but then a(n) is larger than 2q-1. Phil Carmody proved a(n)>=2q-1. Terms were calculated by Weissman, Carmody and McCranie.
A049300(n) is the smallest value of the mentioned consecutive integers. - Reinhard Zumkeller, Jun 14 2003
By Lemma 5 of Maynard, there is a constant C > 0 such that, for any n, there is a prime p <= C*exp(prime(n)) such that q - p >= a(n) where q is the smallest prime larger than p. (Probably C = 7/e^3 = 0.35... is admissible.) - Charles R Greathouse IV, Aug 01 2024

Examples

			The 4th prime is 7. Nine is the maximum number of consecutive integers such that each is divisible by 2, 3, 5 or 7. (Example: 2 through 10) So a(4)=9.
		

References

  • Dickson, L. E., History of the Theory of Numbers, Vol. 1, p. 439, Chelsea, 1952.

Crossrefs

Programs

  • Mathematica
    (* This program is not suitable to compute more than a few terms *)
    primorial[n_] := Product[Prime[k], {k, 1, n}];
    j[n_] := Module[{L = 1, m = 1}, For[k = 2, k <= n+1, k++, If[GCD[k, n] == 1, If[L+m < k, m = k-L]; L = k]]; m];
    a[1] = 1;
    a[n_] := a[n] = j[primorial[n]] - 1;
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 10}] (* Jean-François Alcover, Sep 05 2017 *)
  • PARI
    do(n,P,R)=for(i=1,#R, if(n==R[i], return(do(n+1,P,R)))); if(#P==0, return(n-1)); my(b=0); for(i=1,#P,my(t=do(n+1,setminus(P,[P[i]]), concat(R,Mod(n,P[i])))); if(t>b,b=t)); b
    a(n)=do(1,primes(n),[]) \\ Charles R Greathouse IV, Aug 08 2024

Formula

a(n) = A048670(n) - 1. See that entry for additional information.
Iwaniec proved that a(n) << n^2*(log n)^2. - Charles R Greathouse IV, Sep 08 2012
a(n) >= (2e^gamma + o(1)) n log^2 n log log log n / (log log n)^2, see A048670. - Charles R Greathouse IV, Sep 08 2012
a(n) = 2 * A072752(n) + 1. - Mario Ziller, Dec 08 2016
See A048669 for many other bounds and references. - N. J. A. Sloane, Apr 19 2017

Extensions

Laison and Schick reference from Parthasarathy Nambi, Oct 19 2007
More terms from A048670 added by Max Alekseyev, Feb 07 2008
a(46) corrected and a(50)-a(54) added by Mario Ziller, Dec 08 2016
a(55)-a(64) from A048670 added by Constantino Calancha, Aug 05 2023