cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059009 Numbers having an odd number of zeros in their binary expansion.

Original entry on oeis.org

0, 2, 5, 6, 8, 11, 13, 14, 17, 18, 20, 23, 24, 27, 29, 30, 32, 35, 37, 38, 41, 42, 44, 47, 49, 50, 52, 55, 56, 59, 61, 62, 65, 66, 68, 71, 72, 75, 77, 78, 80, 83, 85, 86, 89, 90, 92, 95, 96, 99, 101, 102, 105, 106, 108, 111, 113, 114, 116, 119, 120, 123, 125, 126, 128, 131
Offset: 0

Views

Author

Patrick De Geest, Dec 15 2000

Keywords

Comments

Positions of ones in A059448 for n >= 1. - John Keith, Mar 09 2022

Examples

			18 is in the sequence because 18 = 10010_2. '10010' has three zeros. - _Indranil Ghosh_, Feb 04 2017
		

Crossrefs

Programs

  • Haskell
    a059009 n = a059009_list !! (n-1)
    a059009_list = filter (odd . a023416) [1..]
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Maple
    a:= proc(n) option remember;
      if n::even then -a(n/2) + 3*n + 1 else a((n-1)/2) + n + 1 fi
    end proc:
    a(0):= 0:
    seq(a(n),n=0..100); # Robert Israel, Feb 23 2016
  • Mathematica
    Select[Range[0,150],OddQ[Count[IntegerDigits[#,2],0]]&] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    is(n)=hammingweight(bitneg(n,#binary(n)))%2 \\ Charles R Greathouse IV, Mar 26 2013
    
  • PARI
    a(n) = if(n==0,0, 2*n + (logint(n,2) - hammingweight(n) + 1) % 2); \\ Kevin Ryde, Mar 11 2021
    
  • Python
    i=j=0
    while j<=800:
        if bin(i)[2:].count("0")%2:
            print(str(j)+" "+str(i))
            j+=1
        i+=1 # Indranil Ghosh, Feb 04 2017
    
  • R
    maxrow <- 4 # by choice
    onezeros <- 1
    for(m in 1:(maxrow+1)){
      row <- onezeros[2^(m-1):(2^m-1)]
      onezeros <- c(onezeros, c(1-row, row) )
    }
    a <- which(onezeros == 0)
    a
    # Yosu Yurramendi, Mar 28 2017

Formula

a(0) = 0, a(2*n) = -a(n) + 6*n + 1, a(2*n+1) = a(n) + 2*n + 2. a(n) = 2*n + 1/2(1-(-1)^A023416(n)) = 2*n + A059448(n). - Ralf Stephan, Sep 17 2003