cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059010 Natural numbers having an even number of nonleading zeros in their binary expansion.

Original entry on oeis.org

1, 3, 4, 7, 9, 10, 12, 15, 16, 19, 21, 22, 25, 26, 28, 31, 33, 34, 36, 39, 40, 43, 45, 46, 48, 51, 53, 54, 57, 58, 60, 63, 64, 67, 69, 70, 73, 74, 76, 79, 81, 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112, 115, 117, 118, 121, 122, 124, 127, 129, 130
Offset: 0

Views

Author

Patrick De Geest, Dec 15 2000

Keywords

Comments

Positions of ones in A298952, and of zeros in A059448. - John Keith, Mar 09 2022

Crossrefs

Cf. A059009 (complement).
Cf. A023416 (number of 0-bits), A059448 (their parity), A298952 (opposite parity).
Cf. A001969 (even 1-bits), A059012 (even both 0's and 1's), A059014 (even 0's, odd 1's).

Programs

  • Haskell
    a059010 n = a059010_list !! (n-1)
    a059010_list = filter (even . a023416) [1..]
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Mathematica
    Select[Range[130], EvenQ @ DigitCount[#, 2, 0] &] (* Jean-François Alcover, Apr 11 2011 *)
  • PARI
    is(n)=hammingweight(bitneg(n,#binary(n)))%2==0 \\ Charles R Greathouse IV, Mar 26 2013
    
  • PARI
    a(n) = if(n==0,1, 2*n + (logint(n,2) - hammingweight(n)) % 2); \\ Kevin Ryde, Mar 11 2021
    
  • Python
    #Program to generate the b-file
    i=1
    j=0
    while j<=250:
        if bin(i)[2:].count("0")%2==0:
            print(str(j)+" "+str(i))
            j+=1
        i+=1 # Indranil Ghosh, Feb 03 2017
    
  • R
    maxrow <- 4 # by choice
    onezeros <- 1
    for(m in 1:(maxrow+1)){
      row <- onezeros[2^(m-1):(2^m-1)]
      onezeros <- c(onezeros, c(1-row, row) )
    }
    a <- which(onezeros == 1)
    a
    # Yosu Yurramendi, Mar 28 2017

Formula

a(0) = 1, a(2n) = -a(n) + 6n + 1, a(2n+1) = a(n) + 2n + 2. a(n) = 2n+1 - 1/2(1-(-1)^A023416(n)) = 2n+1 - A059448(n). - Ralf Stephan, Sep 17 2003

Extensions

Name clarified by Antti Karttunen, Mar 28 2017