A059023 Triangle of Stirling numbers of order 4.
1, 1, 1, 1, 1, 35, 1, 126, 1, 336, 1, 792, 1, 1749, 5775, 1, 3718, 45045, 1, 7722, 231231, 1, 15808, 981981, 1, 32071, 3741738, 2627625, 1, 64702, 13307294, 35735700, 1, 130084, 45172842, 300179880, 1, 260984, 148417854, 2002016016, 1, 522937, 476330361
Offset: 4
Examples
There are 35 ways of partitioning a set N of cardinality 8 into 2 blocks each of cardinality at least 4, so S_4(8,2) = 35.
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
Links
- Alois P. Heinz, Rows n = 4..300, flattened
- A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add( expand(x*b(n-j))*binomial(n-1, j-1), j=4..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)): seq(T(n), n=4..20); # Alois P. Heinz, Feb 21 2022 # alternative A059023 := proc(n, k) option remember; if n<4 then 0; elif n < 8 and k=1 then 1 ; else k*procname(n-1, k)+binomial(n-1, 3)*procname(n-4, k-1) ; end if; end proc: # R. J. Mathar, Apr 15 2022
-
Mathematica
s4[n_, k_] := k*s4[n-1, k] + Binomial[n-1, 3]*s4[n-4, k-1]; s4[n_, k_] /; 4 k > n = 0; s4[, k /; k <= 0] = 0; s4[0, 0] = 1; Flatten[Table[s4[n, k], {n, 4, 20}, {k, 1, Floor[n/4]}]][[1 ;; 42]] (* Jean-François Alcover, Jun 16 2011 *)
Formula
S_r(n+1, k) = k*S_r(n, k) + binomial(n, r-1)*S_r(n-r+1, k-1); for this sequence, r=4.
G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t-sum(t^i/i!, i=0..r-1))).
T(n,k) = Sum_{j=0..min(n/3,k)} (-1)^j*n!/(6^j*j!*(n-3j)!)*S_3(n-3j,k-j), where S_3 are the 3-associated Stirling numbers of the second kind A059022. - Fabián Pereyra, Feb 21 2022
Comments