cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A059023 Triangle of Stirling numbers of order 4.

Original entry on oeis.org

1, 1, 1, 1, 1, 35, 1, 126, 1, 336, 1, 792, 1, 1749, 5775, 1, 3718, 45045, 1, 7722, 231231, 1, 15808, 981981, 1, 32071, 3741738, 2627625, 1, 64702, 13307294, 35735700, 1, 130084, 45172842, 300179880, 1, 260984, 148417854, 2002016016, 1, 522937, 476330361
Offset: 4

Views

Author

Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000

Keywords

Comments

The number of partitions of the set N, |N|=n, into k blocks, all of cardinality greater than or equal to 4. This is the 4-associated Stirling number of the second kind.
This is entered as a triangular array. The entries S_4(n,k) are zero for 4k>n, so these values are omitted. Initial entry in sequence is S_4(4,1).
Rows are of lengths 1,1,1,1,2,2,2,2,3,3,3,3,...

Examples

			There are 35 ways of partitioning a set N of cardinality 8 into 2 blocks each of cardinality at least 4, so S_4(8,2) = 35.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.

Crossrefs

Row sums give A057837.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*b(n-j))*binomial(n-1, j-1), j=4..n))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=4..20);  # Alois P. Heinz, Feb 21 2022
    # alternative
    A059023 := proc(n, k)
        option remember;
        if n<4 then
            0;
        elif n < 8 and k=1 then
            1 ;
        else
            k*procname(n-1, k)+binomial(n-1, 3)*procname(n-4, k-1) ;
        end if;
    end proc:  # R. J. Mathar, Apr 15 2022
  • Mathematica
    s4[n_, k_] := k*s4[n-1, k] + Binomial[n-1, 3]*s4[n-4, k-1]; s4[n_, k_] /; 4 k > n = 0; s4[, k /; k <= 0] = 0; s4[0, 0] = 1;
    Flatten[Table[s4[n, k], {n, 4, 20}, {k, 1, Floor[n/4]}]][[1 ;; 42]] (* Jean-François Alcover, Jun 16 2011 *)

Formula

S_r(n+1, k) = k*S_r(n, k) + binomial(n, r-1)*S_r(n-r+1, k-1); for this sequence, r=4.
G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t-sum(t^i/i!, i=0..r-1))).
T(n,k) = Sum_{j=0..min(n/3,k)} (-1)^j*n!/(6^j*j!*(n-3j)!)*S_3(n-3j,k-j), where S_3 are the 3-associated Stirling numbers of the second kind A059022. - Fabián Pereyra, Feb 21 2022